There's an app for that

Two World Series athletes keep in shape thanks to this Houston-based technology

Hometown hero, George Springer, keeps in top shape thanks to a Houston organization's technology. Photo by Ezra Shaw/Getty Images

As the Houston Astros head into game three of the World Series tonight, two players taking the field can credit a West Houston fitness training facility's mobile app for keeping them in shape both during the off season and between games.

Fairchild Sports Performance has been in the professional, collegiate, and amateur sports training business since 2012. A couple years ago, Founder Ben Fairchild decided he wanted to take things to the next level.

"The FSP app is for anybody who has a body," Fairchild says. "We want to find solutions for long-term health and fitness challenges for people of all walks of life."

While the app and the training is for everyone, Fairchild's app has been attractive to professionals. FSP has 15 professional athletes as clients. George Springer, right fielder for the Houston Astros, and Anthony Rendon, third baseman for the Washington Nationals, train with Fairchild — and they both rely on the app to tell them what their bodies need.

The app, which is run by FSP Online Director Steven Hamner, allows the athletes to log and track their progress, view workout demonstrations, and access Fairchild's fitness instruction from anywhere.

In the two seasons the app has been live, FSP's MLB clients have achieved career highs in different categories, All-Star game appearances, MLB debuts, and World Series wins.

"The in-season program and philosophy is based around having a training program year-round as opposed to just a few months out of the year in the offseason," explains Hamner. "In having a program year round it enables us to constantly progress through out the year with the offseason and in-season programs looking completely differently as it relates to frequency, volume, and intensity in the weight room."

While keeping in shape is key during the off season, the app is helpful to these professional athletes during the season too. And, since they have everything they need at their fingertips, it's convenient for away games as they travel across the country.

"The goal for training in-season is to facilitate recovery throughout the season, limit fatigue as much as possible, especially towards the end of the season, and set athletes up for a positive starting place in the offseason," says Hamner. "This will lead to a better physical state going into the following spring training. We always have the long-term best interest of the player in mind, this is their career earning potential, which is tied to their health and performance."

The sports technology business is booming, and Houston has become a hotbed for startups creating technology — like Truss, Integrated Bionics, and Win-Win. Fairchild says he has some interest in the power of data and technology for sports performance, but he won't be going overboard.

"Data gathering possibilities are enormous in this day and age," Fairchild tells InnovationMap. "However, data is only as valuable as one's ability to make use of the results and effect change. That said, we try to get the most valuable measuring tools, be it for evaluation of pitching biomechanics or rate of force delivery on an exercise, to help shape workouts. We don't get carried away with tech — we trust the eyes of experienced people. But we use tech to the level that is beneficial.

Trending News

Building Houston

 
 

Five research teams are studying space radiation's effect on human tissue. Photo via NASA/Josh Valcarcel

A Houston-based organization has named five research projects to advance the understanding of space radiation using human tissue. Two of the five projects are based in Houston.

The Translational Research Institute for Space Health, or TRISH, is based at Baylor College of Medicine and funds health research and tech for astronauts during space missions. The astronauts who are headed to the moon or further will be exposed to high Galactic Cosmic Radiation levels, and TRISH wants to learn more about the effects of GCR.

"With this solicitation, TRISH was looking for novel human-based approaches to understand better Galactic Cosmic Rays (GCR) hazards, in addition to safe and effective countermeasures," says Kristin Fabre, TRISH's chief scientist, in a news release. "More than that, we sought interdisciplinary teams of scientists to carry these ideas forward. These five projects embody TRISH's approach to cutting-edge science."

The five projects are:

  • Michael Weil, PhD, of Colorado State University, Colorado — Effects of chronic high LET radiation on the human heart
  • Gordana Vunjak-Novakovic, PhD of Columbia University, New York — Human multi-tissue platform to study effects of space radiation and countermeasures
  • Sharon Gerecht, PhD of Johns Hopkins University, Maryland — Using human stem-cell derived vascular, neural and cardiac 3D tissues to determine countermeasures for radiation
  • Sarah Blutt, PhD of Baylor College of Medicine, Texas — Use of Microbial Based Countermeasures to Mitigate Radiation Induced Intestinal Damage
  • Mirjana Maletic-Savatic, PhD of Baylor College of Medicine, Texas — Counteracting space radiation by targeting neurogenesis in a human brain organoid model

The researchers are tasked with simulating radiation exposure to human tissues in order to study new ways to protect astronauts from the radiation once in deep space. According to the release, the tissue and organ models will be derived from blood donated by the astronaut in order to provide him or her with customized protection that will reduce the risk to their health.

TRISH is funded by a partnership between NASA and Baylor College of Medicine, which also includes consortium partners Caltech and MIT. The organization is also a partner to NASA's Human Research Program.

Trending News