get connected

Houston startup launches networking app for next-generation energy workforce

This Houston-based media company launched a networking platform to help solve the energy crisis. Screenshots via apps.apple.com

A Houston-based media organization dedicated to covering the energy industry has officially launched the beta program of their networking app.

After producing zanily named energy podcasts like “Big Digital Energy” and “What the Funk,” Digital Wildcatters is trying to bridge the hiring gap in the energy industry. By providing a platform for individuals to get their questions answered by experts and a space for companies seeking qualified talent, Collide is structured to ignite the next generation of energy innovators. Collide is currently available for users in both the Apple App Store and Google Play Store.

Collin McLelland, co-founder and CEO of Digital Wildcatters, says he aims to expand their professional community through this networking platform. Rather than being a transition away from Digital Wildcatters’ roots as a digital media organization McLelland explains Collide is an integration of the community they have built through podcasts and events into an interactive platform.

“If you look at what we’ve done historically with Digital Wildcatters, we’ve built an extremely engaged community of energy professionals — it’s a next generation community, very young forward thinking professionals that are working towards solving the world’s energy crisis,” McLelland shares.

The roll out of Collide has been intentionally gradual, McLelland says because they want to shape the user experience based on feedback from ongoing focus groups. Currently they have about 1,000 users and are examining how they can make the app valuable to them before providing the platform to a wider audience.

McLelland says there are two major issues within the energy sector that Collide hopes to address — a lack of knowledge about energy verticals and difficulty recruiting talent. McLelland attributes the information gap to how expansive the energy sector is, incorporating beyond oil and gas, everything from renewables to lithium mining. Similarly, by zeroing in on the energy sector, McLelland believes Collide can draw upon the network of talent Digital Wildcatters has already cultivated to tackle recruiting issues.

“What we really see with our platform is being able to bring people together where if you want to find a piece of information, you need to find a subject matter expert, or if you want to find your next job, it happens on the Collide platform,” McLelland says.

Unlike other hiring platforms, Collide offers users the opportunity to look for information about the energy sector by integrating all of Digital Wildcatters’ podcasts and videos into a content search engine. This program is part of their DW Insight subscription product which also has a startup database with overviews of various companies, from their demos to a portal to contact them.

“We hope someday that we’ll have this knowledge base that can be searched and queried to where if you want to find out any piece of information, you’ll be able to find it on (DW Insight),” McLelland explains.

McLelland co-founded Digital Wildcatters with Jake Corley. The two started the Oil and Gas Startups podcast in 2019.

------

This article originally ran on EnergyCapital.

Trending News

 
 

Promoted

A research team housed out of the newly launched Rice Biotech Launch Pad received funding to scale tech that could slash cancer deaths in half. Photo via Rice University

A research funding agency has deployed capital into a team at Rice University that's working to develop a technology that could cut cancer-related deaths in half.

Rice researchers received $45 million from the National Institutes of Health's Advanced Research Projects Agency for Health, or ARPA-H, to scale up development of a sense-and-respond implant technology. Rice bioengineer Omid Veiseh leads the team developing the technology as principal investigator.

“Instead of tethering patients to hospital beds, IV bags and external monitors, we’ll use a minimally invasive procedure to implant a small device that continuously monitors their cancer and adjusts their immunotherapy dose in real time,” he says in a news release. “This kind of ‘closed-loop therapy’ has been used for managing diabetes, where you have a glucose monitor that continuously talks to an insulin pump. But for cancer immunotherapy, it’s revolutionary.”

Joining Veiseh on the 19-person research project named THOR, which stands for “targeted hybrid oncotherapeutic regulation,” is Amir Jazaeri, co-PI and professor of gynecologic oncology at the University of Texas MD Anderson Cancer Center. The device they are developing is called HAMMR, or hybrid advanced molecular manufacturing regulator.

“Cancer cells are continually evolving and adapting to therapy. However, currently available diagnostic tools, including radiologic tests, blood assays and biopsies, provide very infrequent and limited snapshots of this dynamic process," Jazaeri adds. "As a result, today’s therapies treat cancer as if it were a static disease. We believe THOR could transform the status quo by providing real-time data from the tumor environment that can in turn guide more effective and tumor-informed novel therapies.”

With a national team of engineers, physicians, and experts across synthetic biology, materials science, immunology, oncology, and more, the team will receive its funding through the Rice Biotech Launch Pad, a newly launched initiative led by Veiseh that exists to help life-saving medical innovation scale quickly.

"Rice is proud to be the recipient of the second major funding award from the ARPA-H, a new funding agency established last year to support research that catalyzes health breakthroughs," Rice President Reginald DesRoches says. "The research Rice bioengineer Omid Veiseh is doing in leading this team is truly groundbreaking and could potentially save hundreds of thousands of lives each year. This is the type of research that makes a significant impact on the world.”

The initial focus of the technology will be on ovarian cancer, and this funding agreement includes a first-phase clinical trial of HAMMR for the treatment of recurrent ovarian cancer that's expected to take place in the fourth year of THOR’s multi-year project.

“The technology is broadly applicable for peritoneal cancers that affect the pancreas, liver, lungs and other organs,” Veiseh says. “The first clinical trial will focus on refractory recurrent ovarian cancer, and the benefit of that is that we have an ongoing trial for ovarian cancer with our encapsulated cytokine ‘drug factory’ technology. We'll be able to build on that experience. We have already demonstrated a unique model to go from concept to clinical trial within five years, and HAMMR is the next iteration of that approach.”

Trending News

 
 

Promoted