3 Houston innovators to know this week

This week's roundup of Houston innovators includes Jeremy Pitts of Activate Houston, Tim Boire of VenoStent, and Kevin Knobloch of Greentown Labs. Photos courtesy

Editor's note: In this week's roundup of Houston innovators to know, I'm introducing you to three local innovators across industries — from medical device to climatetech — recently making headlines in Houston innovation.

Jeremy Pitts, managing director for Activate Houston

Jeremy Pitts has been named the inaugural Houston managing director for Activate. Photo via LinkedIn

Activate named Jeremy Pitts as the Houston managing director this month. The nonprofit, which announced its new Houston program earlier this year, was founded in Berkeley, California, in 2015 to bridge the gap between the federal and public sectors to deploy capital and resources into the innovators creating transformative products.

For Activate Houston, the challenge is to focus on finding and supporting innovators within the energy sector.

"There are so many reasons to be excited about the energy transition and overall innovation ecosystem in Houston — the region's leadership in energy and desire to maintain that leadership through the energy transition, the many corporations leading the charge to be part of that change who are speaking with their actions and not just their words, the incredible access to talent, the region's diversity, the list goes on and on," Pitts tells InnovationMap. Read more.

Tim Boire, CEO and co-founder of VenoStent

Tim Boire shares his company's roadmap on this week's episode of the Houston Innovators Podcast. Photo via LinkedIn

Commercializing a health tech innovation is a long game — fraught with regulatory obstacles, cyclical rounds of funding, and continuous improvement — all fueled by the desire to enhance treatment and save lives.

That's Tim Boire's plan. And it's a thorough one at that. On this week's episode of the Houston Innovators Podcast, Boire — president and CEO of VenoStent, a medical device startup that’s designing a unique material for hemodialysis patients — shares his roadmap for his company.

"We believe we can be pioneers of a paradigm shift in vascular surgery — to not just treat problems after they've already occurred, but actually prevent them from occurring in the first place," he says in the episode. Read more.

Kevin Knobloch , CEO of Greentown Labs

Kevin Knobloch will lead Greentown Labs as CEO. Photo via LinkedIn

While not based in Houston, Kevin Knobloch, who served as chief of staff of the United States Department of Energy in President Barack Obama’s second term, is definitely going to be someone to know in the innovation ecosystem. He will be CEO of Greentown Labs, effective September 5. In his role, Knobloch will oversee both Greentown locations in Houston and Somerville, Massachusetts, outside of Boston.

“I’m honored and thrilled to have the opportunity to once again pass the leadership baton,” Greentown Co-Founder Jason Hanna says, who has been serving as interim CEO. “Especially so given Kevin’s incredible record of climate leadership. I’m excited for the future of this organization and the impact he can make as Greentown enters the second decade of its climate mission.” Read more.

Trending News

 
 

Promoted

A research team housed out of the newly launched Rice Biotech Launch Pad received funding to scale tech that could slash cancer deaths in half. Photo via Rice University

A research funding agency has deployed capital into a team at Rice University that's working to develop a technology that could cut cancer-related deaths in half.

Rice researchers received $45 million from the National Institutes of Health's Advanced Research Projects Agency for Health, or ARPA-H, to scale up development of a sense-and-respond implant technology. Rice bioengineer Omid Veiseh leads the team developing the technology as principal investigator.

“Instead of tethering patients to hospital beds, IV bags and external monitors, we’ll use a minimally invasive procedure to implant a small device that continuously monitors their cancer and adjusts their immunotherapy dose in real time,” he says in a news release. “This kind of ‘closed-loop therapy’ has been used for managing diabetes, where you have a glucose monitor that continuously talks to an insulin pump. But for cancer immunotherapy, it’s revolutionary.”

Joining Veiseh on the 19-person research project named THOR, which stands for “targeted hybrid oncotherapeutic regulation,” is Amir Jazaeri, co-PI and professor of gynecologic oncology at the University of Texas MD Anderson Cancer Center. The device they are developing is called HAMMR, or hybrid advanced molecular manufacturing regulator.

“Cancer cells are continually evolving and adapting to therapy. However, currently available diagnostic tools, including radiologic tests, blood assays and biopsies, provide very infrequent and limited snapshots of this dynamic process," Jazaeri adds. "As a result, today’s therapies treat cancer as if it were a static disease. We believe THOR could transform the status quo by providing real-time data from the tumor environment that can in turn guide more effective and tumor-informed novel therapies.”

With a national team of engineers, physicians, and experts across synthetic biology, materials science, immunology, oncology, and more, the team will receive its funding through the Rice Biotech Launch Pad, a newly launched initiative led by Veiseh that exists to help life-saving medical innovation scale quickly.

"Rice is proud to be the recipient of the second major funding award from the ARPA-H, a new funding agency established last year to support research that catalyzes health breakthroughs," Rice President Reginald DesRoches says. "The research Rice bioengineer Omid Veiseh is doing in leading this team is truly groundbreaking and could potentially save hundreds of thousands of lives each year. This is the type of research that makes a significant impact on the world.”

The initial focus of the technology will be on ovarian cancer, and this funding agreement includes a first-phase clinical trial of HAMMR for the treatment of recurrent ovarian cancer that's expected to take place in the fourth year of THOR’s multi-year project.

“The technology is broadly applicable for peritoneal cancers that affect the pancreas, liver, lungs and other organs,” Veiseh says. “The first clinical trial will focus on refractory recurrent ovarian cancer, and the benefit of that is that we have an ongoing trial for ovarian cancer with our encapsulated cytokine ‘drug factory’ technology. We'll be able to build on that experience. We have already demonstrated a unique model to go from concept to clinical trial within five years, and HAMMR is the next iteration of that approach.”

Trending News

 
 

Promoted