Houston voices

How to engage potential clients or investors for your science-based startup or technology

Words are hard. Here's how to pick the best ones to use to better communicate your science-based startup's mission. Miguel Tovar/University of Houston

So you're a researcher. Communicating science to a non-scientific audience scares the chemistry out of you.

You've spent your entire career studying fungiform papillae density. The mere thought of fungiform papillae density gives you a rush that even love cannot provide. You know everything about fungiform papillae density. One day you have an interview with a reporter. You're preparing to present at a conference for shareholders. You're writing a grant application. Or you're just at the family cookout and your crazy Uncle Joe with the glass eye wants to know what you do for work.

It's time.

This is the moment where you have to reach deep within yourself to scrape every bit of communications skill in your body. It's time to do what has challenged even the most brilliant scientific minds for ages: explain your work simply.

Yes, there is difficulty in simplicity. The irony is as rich as it is tragic.

Thankfully, there is hope. There are plenty of things you can do to ensure your message is communicated effectively to your non-scientific audience.

Communicating science with better word choices

The old '80s band Missing Persons once sang, "What are words for, when no one listens anymore?"

If what you're saying is not engaging, direct, or simple to understand, your listener will stop listening. The same thing is true for writing.

The words you use matter. They determine whether or not your audience will lock on to what you're trying to convey. Use language that is clear and simple and registers your message.

Personal pronouns like I, you, we help connect readers with the writer and his or her message. Such pronouns present your writing as more of a conversation. People tend to invest more in a conversation than a research paper. Conversations are natural and everyone understands them because everyone is experienced with them. The same cannot be said for research papers about, say, the role of lactic acid production by probiotic Lactobacillus species.

Let's look at the pronouns in action. In the first sentence, you'll see an unnecessarily long, bombastic, impersonal message. In the second, you'll find a more personable, inviting message:

Investigators with supplemental queries or interest in funding opportunities should contact the program.

Contact us if you are interested in funding opportunities.

Words are choice

Your word choices are vital in helping your readers digest your material. Choosing the appropriate words in communicating science stories can not only capture your readers' attention, but keep it.

Use positive words over negative ones. Negative words like don't or not can confuse readers.

Consider this sentence: "The machine doesn't run if you don't follow these instructions exactly as they are written."

It's confusing, isn't it?

Let's rework it with positive words: "The machine will run better if you follow these instructions exactly."

Now there's a sentence that inspires hope.

Inclusive language also helps everyone feel engaged. Stay away from male only pronouns like he and his. Unless you're writing a research paper specifically about men, it's always better to use inclusive language so that non-male readers can follow along and become invested in what you're communicating.

Simple sentences

Using direct, efficiently constructed sentences well get your point across most effectively. According to the search engine optimization platform Yoast, you should keep your sentences under 20 words. Keeping it short with no more than two punctuation points in the body of the sentence will help the reader understand your message. It lets them breathe. It's not overwhelming when it's short.

Make sure to keep your sentences simple, too. Make sure you only cover one idea in every sentence. Keep each paragraph centered on one theme only. Introducing more than one idea or theme will dilute the focus a reader has, because he or she has to divide their attention to give to more things.

Cut the fat. You don't need intensifiers like very, really, actually, or carefully in communicating science stories. They don't really have a purpose. If something is hot and you want to emphasize that point, don't describe it as "really hot." Instead, say that it's "dangerously hot." Say that people have been hospitalized from touching this hot thing. Now you're really saying something.

Verbs with a vengence

Summon the absolute power of verbs.

"Frankie broke the guitar" is a much more vivid portrayal of what happened than "The guitar was broken by Frankie."

Passive voice is often used in a not-so-creative way to hide wrongdoing.

"The money was taken."

Who took the money? The reader might conclude that the writer is hiding something.

"The store manager took the money."

Now you're telling us something we can use. Arrest the store manager.

What you just witnessed is the difference between passive voice (the former) and the active voice (the latter).

It's undeniable that the choices you make with your words and sentences can either connect or kill your audience's interest. They can make the process of communicating science easier or put the brakes on.

Making your technical paper a casual conversation without compromising the integrity of your research helps the lay audience follow along. Using active voice over passive voice helps your readers maintain interest because you're showing a sense of action where someone is doing something. Using universal pronouns expands your reach because everyone can feel they can invest in your writing. Hope is not lost. You can communicate even the most arcane material to the least scientific audiences.

"It is easy for us to forget the power of words. We use them the way an engineer uses a slide rule or a surgeon uses a scalpel." – Jonathan Capehart, Pulitzer Prize winner, The Washington Post.

------

This article originally appeared on the University of Houston's The Big Idea.

Rene Cantu is the writer and editor at UH Division of Research.

The University of Houston campus has 30 new members — self-driving, food-delivering robots. Photo courtesy of UH

For a small delivery fee of $1.99, students, faculty, and staff across the University of Houston campus can now get their lunch delivered by self-driving robots.

Thirty of San Francisco-based Starship Technologies' autonomous delivery robots now roam the campus thanks to a partnership with New York-based Chartwells Higher Education. The Houston campus is the first to roll out robotic food deliveries.

"This revolutionary delivery method will make it more convenient for the campus community to take advantage of our diverse dining program from anywhere on campus while expanding the hours of operation," says Emily Messa, associate vice president for administration, in a news release. "By opening our campus to this innovative service, which is paid for by the customers, the university didn't have to spend any money purchasing the technology, yet we're enhancing our food delivery capabilities."

Through the Starship Deliveries app, which is available on iOS and Android, users can select from 11 dining institutions and then identify where they are on campus. The platform allows the user to track the progress, and the device can hold up to 20 lbs of food and has the space for about three shopping bags of groceries.

"This increases our capacity to reach more customers, and I expect the robots will quickly become part of campus life," says David Riddle, Chartwells resident district manager, in a news release. (Chartwells manages UH Dining). "Robot delivery will also grow opportunities for UH Dining employees by increasing service hours and growing sales. It has also created additional jobs for students dedicated specifically to servicing the autonomous robots. It's an important advancement for foodservice at UH."

Using machine learning, artificial intelligence and sensors, the company's robots have driven over 350,000 miles and completed over 150,000 deliveries. The Starship robots "can cross streets, climb curbs, travel at night and operate in both rain and snow," per the release.

"Robotic delivery is affordable, convenient and environmentally friendly," says Ryan Tuohy, senior vice president of business development for Starship, in the release. "We're excited to start offering students, staff and faculty at Houston delivery within minutes when they need it most."