Words are hard. Here's how to pick the best ones to use to better communicate your science-based startup's mission. Miguel Tovar/University of Houston

So you're a researcher. Communicating science to a non-scientific audience scares the chemistry out of you.

You've spent your entire career studying fungiform papillae density. The mere thought of fungiform papillae density gives you a rush that even love cannot provide. You know everything about fungiform papillae density. One day you have an interview with a reporter. You're preparing to present at a conference for shareholders. You're writing a grant application. Or you're just at the family cookout and your crazy Uncle Joe with the glass eye wants to know what you do for work.

It's time.

This is the moment where you have to reach deep within yourself to scrape every bit of communications skill in your body. It's time to do what has challenged even the most brilliant scientific minds for ages: explain your work simply.

Yes, there is difficulty in simplicity. The irony is as rich as it is tragic.

Thankfully, there is hope. There are plenty of things you can do to ensure your message is communicated effectively to your non-scientific audience.

Communicating science with better word choices

The old '80s band Missing Persons once sang, "What are words for, when no one listens anymore?"

If what you're saying is not engaging, direct, or simple to understand, your listener will stop listening. The same thing is true for writing.

The words you use matter. They determine whether or not your audience will lock on to what you're trying to convey. Use language that is clear and simple and registers your message.

Personal pronouns like I, you, we help connect readers with the writer and his or her message. Such pronouns present your writing as more of a conversation. People tend to invest more in a conversation than a research paper. Conversations are natural and everyone understands them because everyone is experienced with them. The same cannot be said for research papers about, say, the role of lactic acid production by probiotic Lactobacillus species.

Let's look at the pronouns in action. In the first sentence, you'll see an unnecessarily long, bombastic, impersonal message. In the second, you'll find a more personable, inviting message:

Investigators with supplemental queries or interest in funding opportunities should contact the program.

Contact us if you are interested in funding opportunities.

Words are choice

Your word choices are vital in helping your readers digest your material. Choosing the appropriate words in communicating science stories can not only capture your readers' attention, but keep it.

Use positive words over negative ones. Negative words like don't or not can confuse readers.

Consider this sentence: "The machine doesn't run if you don't follow these instructions exactly as they are written."

It's confusing, isn't it?

Let's rework it with positive words: "The machine will run better if you follow these instructions exactly."

Now there's a sentence that inspires hope.

Inclusive language also helps everyone feel engaged. Stay away from male only pronouns like he and his. Unless you're writing a research paper specifically about men, it's always better to use inclusive language so that non-male readers can follow along and become invested in what you're communicating.

Simple sentences

Using direct, efficiently constructed sentences well get your point across most effectively. According to the search engine optimization platform Yoast, you should keep your sentences under 20 words. Keeping it short with no more than two punctuation points in the body of the sentence will help the reader understand your message. It lets them breathe. It's not overwhelming when it's short.

Make sure to keep your sentences simple, too. Make sure you only cover one idea in every sentence. Keep each paragraph centered on one theme only. Introducing more than one idea or theme will dilute the focus a reader has, because he or she has to divide their attention to give to more things.

Cut the fat. You don't need intensifiers like very, really, actually, or carefully in communicating science stories. They don't really have a purpose. If something is hot and you want to emphasize that point, don't describe it as "really hot." Instead, say that it's "dangerously hot." Say that people have been hospitalized from touching this hot thing. Now you're really saying something.

Verbs with a vengence

Summon the absolute power of verbs.

"Frankie broke the guitar" is a much more vivid portrayal of what happened than "The guitar was broken by Frankie."

Passive voice is often used in a not-so-creative way to hide wrongdoing.

"The money was taken."

Who took the money? The reader might conclude that the writer is hiding something.

"The store manager took the money."

Now you're telling us something we can use. Arrest the store manager.

What you just witnessed is the difference between passive voice (the former) and the active voice (the latter).

It's undeniable that the choices you make with your words and sentences can either connect or kill your audience's interest. They can make the process of communicating science easier or put the brakes on.

Making your technical paper a casual conversation without compromising the integrity of your research helps the lay audience follow along. Using active voice over passive voice helps your readers maintain interest because you're showing a sense of action where someone is doing something. Using universal pronouns expands your reach because everyone can feel they can invest in your writing. Hope is not lost. You can communicate even the most arcane material to the least scientific audiences.

"It is easy for us to forget the power of words. We use them the way an engineer uses a slide rule or a surgeon uses a scalpel." – Jonathan Capehart, Pulitzer Prize winner, The Washington Post.

------

This article originally appeared on the University of Houston's The Big Idea.

Rene Cantu is the writer and editor at UH Division of Research.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.

Luxury transportation startup connects Houston with Austin and San Antonio

On The Road Again

Houston business and leisure travelers have a luxe new way to hop between Texas cities. Transportation startup Shutto has launched luxury van service connecting San Antonio, Austin, and Houston, offering travelers a comfortable alternative to flying or long-haul rideshare.

Bookings are now available Monday through Saturday with departure times in the morning and evening. One-way fares range from $47-$87, putting Shutto in a similar lane to Dallas-based Vonlane, which also offers routes from Houston to Austin and San Antonio.

Shutto enters the market at a time when highway congestion is a hotter topic than ever. With high-speed rail still years in the future, its model aims to provide fast, predictable service at commuter prices.

The startup touts an on-time departure guarantee and a relaxed, intimate ride. Only 12 passengers fit inside each Mercedes Sprinter van, equipped with Wi-Fi and leather seating. And each route includes a pit stop at roadside favorite Buc-ee's.

In announcing the launch, founder and CEO Alberto Salcedo called the company a new category in Texas mobility.

“We are bringing true disruptive mobility to Texas: faster and more convenient than flying (no security lines, no delays), more comfortable and exclusive than the bus or train, and up to 70 percent cheaper than private transfers or Uber Black,” Salcedo said in a release.

“Whether you’re commuting for business, visiting family, exploring Texas wineries, or doing a taco tour in San Antonio, Shutto makes traveling between these cities as easy and affordable as riding inside the city."

Beyond the scheduled routes, Shutto offers private, customizable trips anywhere in the country, a service it expects will appeal to corporate retreat planners, party planners, and tourists alike.

In Houston, the service picks up and drops off near the Galleria at the Foam Coffee & Kitchen parking lot, 5819 Richmond Ave.. In San Antonio, it is located at La Panadería Bakery’s parking lot at 8305 Broadway. In Austin, the location is the Pershing East Café parking lot at 2501 E. Fifth St.

---

This article originally appeared on CultureMap.com.

Houston-area lab grows with focus on mobile diagnostics and predictive medicine

mobile medicine

When it comes to healthcare, access can be a matter of life and death. And for patients in skilled nursing facilities, assisted living or even their own homes, the ability to get timely diagnostic testing is not just a convenience, it’s a necessity.

That’s the problem Principle Health Systems (PHS) set out to solve.

Founded in 2016 in Clear Lake, Texas, PHS began as a conventional laboratory but quickly pivoted to mobile diagnostics, offering everything from core blood work and genetic testing to advanced imaging like ultrasounds, echocardiograms, and X-rays.

“We were approached by a group in a local skilled nursing facility to provide services, and we determined pretty quickly there was a massive need in this area,” says James Dieter, founder, chairman and CEO of PHS. “Turnaround time is imperative. These facilities have an incredibly sick population, and of course, they lack mobility to get the care that they need.”

What makes PHS unique is not only what they do, but where they do it. While they operate one of the largest labs serving skilled nursing facilities in the state, their mobile teams go wherever patients are, whether that’s a nursing home, a private residence or even a correctional facility.

Diagnostics, Dieter says, are at the heart of medical decision-making.

“Seventy to 80 percent of all medical decisions are made from diagnostic results in lab and imaging,” he says. “The diagnostic drives the doctor’s or the provider’s next move. When we recognized a massive slowdown in lab results, we had to innovate to do it faster.”

Innovation at PHS isn’t just about speed; it’s about accessibility and precision.

Chris Light, COO, explains: “For stat testing, we use bedside point-of-care instruments. Our phlebotomists take those into the facilities, test at the bedside, and get results within minutes, rather than waiting days for results to come back from a core lab.”

Scaling a mobile operation across multiple states isn’t simple, but PHS has expanded into nine states, including Texas, Oklahoma, Kansas, Missouri and Arizona. Their model relies on licensed mobile phlebotomists, X-ray technologists and sonographers, all trained to provide high-level care outside traditional hospital settings.

The financial impact for patients is significant. Instead of ambulance rides and ER visits costing thousands, PHS services often cost just a fraction, sometimes only tens or hundreds of dollars.

“Traditionally, without mobile diagnostics, the patient would be loaded into a transportation vehicle, typically an ambulance, and taken to a hospital,” Dieter says. “Our approach is a fraction of the cost but brings care directly to the patients.”

The company has also embraced predictive and personalized medicine, offering genetic tests that guide medication decisions and laboratory tests that predict cognitive decline from conditions like Alzheimer's and Parkinson’s.

“We actively look for complementary services to improve patient outcomes,” Dieter says. “Precision medicine and predictive testing have been a great value-add for our providers.”

Looking to the future, PHS sees mobile healthcare as part of a larger trend toward home-based care.

“There’s an aging population that still lives at home with caretakers,” Dieter explains. “We go into the home every day, whether it’s an apartment, a standalone home, or assisted living. The goal is to meet patients where they are and reduce the need for hospitalization.”

Light highlighted another layer of innovation: predictive guidance.

“We host a lot of data, and labs and imaging drive most treatment decisions,” Light says. “We’re exploring how to deploy diagnostics immediately based on results, eliminating hours of delay and keeping patients healthier longer.”

Ultimately, innovation at PHS isn’t just about technology; it’s about equity.

“There’s an 11-year life expectancy gap between major metro areas and rural Texas,” Dieter says. “Our innovation has been leveling the field, so everyone has access to high-quality diagnostics and care, regardless of where they live.”