Houston voices

UH experts weigh in on the funding gap for female researchers

Universities need to make sure all faculty who want to work with the private sector have a chance to succeed, regardless of their gender or discipline. Miguel Tovar/University of Houston

The researchers had a hypothesis. Women faculty, they predicted, would be more successful than their male counterparts at earning private funding – from industry, from nonprofit groups, from charitable endowments. That was about relationships, after all, an area where the popular literature suggests women excel.

The numbers told a different story.

A review of faculty research funding conducted by the Center for ADVANCING Faculty Success at the University of Houston – funded by the National Science Foundation to help recruit and retain female faculty, and especially women of color, in STEM fields – found that women and men had similar success rates when competing for funding from federal agencies. With industry funding, however, the disparities were greater.

"It's about networking," says Christiane Spitzmueller, an industrial psychologist and managing director of the UH center. "Men do more of that. Women aren't primed as much for networking and self-marketing."

No one tracks the numbers nationally, and not all universities report a gender disparity. What is clear is that working with industry and nonprofit groups has drawn new attention in academia amid concerns about stagnant or dropping levels of federal research funding and increasing academic interest in finding solutions to some of society's thorniest problems. To take full advantage of the opportunities, universities need to make sure all faculty who want to work with the private sector have a chance to succeed, regardless of their gender or discipline.

Opportunity knocks

Industry needs these partnerships, too.

"Companies are realizing to be competitive, particularly in high-tech domains, they can't rely on only their internal resources," says Jeff Fortin, associate vice president for research and director of Research and Industrial Partnerships at Pennsylvania State University. "They have to look to universities and other external sources to fill that pipeline of innovation."

Some researchers are already fully engaged with industry. Others aren't interested.

Then there is the middle group. "They would like to engage more with companies," Fortin says. "They haven't done it much, and they need more help, explaining how the process works, the contracting."

His office – and those at other universities seeking to increase their interactions with the private sector – can help.

How to approach industry

Research administrators can help by developing policies for intellectual property, licensing and royalty issues that arise from academic-industry partnerships. Companies want to know how those issues will be handled upfront.

Ultimately, however, it's about the individual faculty member. And it requires persistence.

"The big thing is not to sell yourself short," says Rebecca Carrier, professor of chemical engineering at Northeastern University. "Maybe they're not going to be interested in precisely what you want to work on, but they might be interested in a variation of it."

Look for common goals. And prepare for a different type of relationship.

What to expect

Federal funding agencies generally require an annual report, with little or no interaction at other times. Not so with industry funding.

"When you're working on a project industry cares about, you may report in every six months, or conduct monthly or biweekly teleconferences. You may collaborate with their researchers. You may send your students to their site," says Elyse Rosenbaum, Melvin and Anne Louise Hassebrock Professor in Electrical and Computer Engineering at the University of Illinois-Urbana-Champaign. Rosenbaum also is director of the Center for Advanced Electronics through Machine Learning, a National Science Foundation Industry/University Cooperative Research Center.

Sometimes the work is about solving a specific industry problem, whether that's high workforce turnover or limiting methane emissions on oilfield drilling rigs. Sometimes, as Samira Ali, an assistant professor at the University of Houston Graduate College of Social Work, discovered with her first industry grant, the goal is more global.

Ali is directing one of three centers that are part of a $100 million, 10-year initiative from Gilead Sciences Inc. to address HIV/AIDS in the southern United States.

The payoff

Ali had never worked with industry funding, but the project was a good fit with her research interests. It also wasn't something the federal government would be likely to fund, making the partnership a pragmatic choice.

Another benefit? Carrier, who is director of the Advanced Drug Delivery Lab at Northeastern, says connecting with industry ensures she remains focused on real-world problems.

Working with the private sector is a constant reminder of the end goal – in Carrier's case, finding answers to questions about the mucosal barrier in the intestine, with an eye toward enhancing the absorption of medications and nutrients, as well as understanding links between the gut and overall health.

"It's important to stay in touch and in tune with people who are trying to make a product so that I know what I'm doing matters," she says.

The 411 in industry funding

What type of projects?

  • Short-term, often for a period of one year
  • Practical, focused on a specific product or project
  • Industry support for basic science is unusual but not unheard of

How is it different for government funding?

  • Generally less money, for a shorter period of time
  • Fewer restrictions but can require more flexibility
  • More contact, from biannual or monthly conference calls to sending researchers to work at the company, or having their researchers come to your lab
  • A new vocabulary. Terms understood to mean one thing by researchers and federal funding agencies may be used differently by industry

How to connect?

  • Network. Attend conferences that are important to the industry with which you'd like to work.
  • Educate yourself about the problems a particular industry needs to solve, and think about what solutions you may be able to offer
  • Be persistent and don't be afraid of rejection
  • Take advantage of personal connections – friends, neighbors and former classmates who work in industry may help you connect on specific projects

------

This article originally appeared on the University of Houston's The Big Idea.

Jeannie Kever works with the UH division of research as a senior media relations specialist.

Trending News

Building Houston

 
 

The promotion of drones helps the city of Houston transition to becoming the energy 2.0 capital of the world, says this expert. Photo courtesy

The state of Texas, as well as the rest of the nation, has been intensely impacted by the effects of climate change as well as aging utility infrastructure. Innovative drone technologies help address the pressing inspection and mapping needs of utilities and other critical infrastructure across the country, primarily bridges and roads, railways, pipelines, and powerplants.

There is a significant need for high-precision inspection services in today's market. Additional work will result if the proposed infrastructure bill passes. The bill has $73 billion earmarked toward modernizing the nation's electricity grid. Drone —or UAS (unmanned aerial systems)— technological advances, including thermal imaging, LiDAR (light detection and ranging), IRR (infrared radiation and remote sensing), and AI/ML (artificial intelligence/machine learning) are applied toward determining and predicting trends and are instrumental toward making our country safer.

"The newest advances in drone technology are not so much in the drones themselves, but rather, in the sensors and cameras, such as thermal cameras. Technologies such as LiDAR are now more cost-effective. The newer sensors permit the drones to operate in tighter spaces and cover more acreage in less time, with higher accuracy and fidelity", according to Will Paden, president of Soaring Eagle Technologies, a Houston-based tech-enabled imaging company servicing utility and energy companies.

Paden anticipates growth in the use of the technology for critical infrastructure including utilities, pipelines, power plants, bridges, buildings, railways, and more, for routine and post-storm inspections

"[Soaring Eagle's] ability to harness UAS technology to efficiently retrieve field data across our 8,000+ square mile area is unprecedented. Coupling this data with post-processing methods such as asset digitization unlocked a plethora of opportunities to visualize system resources and further analyze the surrounding terrain and environment," says Paige Richardson, GIS specialist with Navopache Electric Cooperative. "Our engineering and operations departments now have the ability to view 3D substation models, abstract high-resolution digital evaluation models, and apply these newfound resources as they work on future construction projects."

The promotion of drones helps the city of Houston transition to becoming the energy 2.0 capital of the world. The UAS (unmanned aerial systems) technology offers an environmentally cleaner option for routine and post-storm inspections, replacing the use of fossil fuels consumed by helicopters. The use of drones versus traditional inspection systems is significantly safer, more efficient and accurate than traditional alternatives such as scaffolding or bucket trucks. Mapping and inspection work can be done at much lower costs than with manned aircraft operations. These are highly technical flights, where the focus on safety and experience flying both manned and unmanned aircraft, is paramount.

There is much work ahead in high-tech drone technology services, especially for companies vetted by the FAA with high safety standards. According to one study, the overall drone inspection & monitoring market is projected to grow from USD 9.1 billion in 2021 to USD 33.6 billion by 2030, at a CAGR of 15.7 percent from 2021 to 2030. North America is estimated to account for the largest share of the drone inspection & monitoring market from 2021 to 2030.

Paden predicts the use of machine learning/artificial intelligence (ML/AI) and data automation will continue to improve over the next 3-5 years, as more data is collected and analyzed and the technology is a applied to "teach it" to detect patterns and anomalies. He anticipates ML/AI will filter out the amount of data the end users will need to view to make decisions saving time and money for the end users.

Learn more at the Energy Drone & Robotics Summit taking place in The Woodlands on October 25 through October 27.

------

Alex Danielides is head of business development for Houston-based Iapetus Holdings, a privately held, minority and veteran-owned portfolio of energy and utility services businesses. One of the companies is Soaring Eagle Technologies.

Trending News