This week's roundup of Houston innovators includes Nicolaus Radford of Nauticus Robotics, Josh Teekell of SmartAC.com, and Zhifeng Ren of the Texas Center for Superconductivity at UH. Photos courtesy

Editor's note: In this week's roundup of Houston innovators to know, I'm introducing you to three local innovators across industries — from robotics to superconductivity — recently making headlines in Houston innovation.

Nicolaus Radford, founder and CEO of Nauticus Robotics

Houston-based Nauticus Robotics founder, Nicolaus Radford, shares the latest from his company and why we're primed for a hardtech movement. Image via LinkedIn

It's been a busy past year or so for Nicolaus Radford, founder and CEO of Nauticus Robotics. He's taken his company public at a difficult time for the market, launched new partnerships with the United States Marine Corps, and even welcomed a new family member.

Originally founded in 2014 as Houston Mechatronics, Nauticus Robotics has designed a fleet of underwater robots and a software platform for autonomous operations. Radford caught up with InnovationMap about these recent milestones for him and the company in an interview.

"I look back on it and it's, you know, ringing the Nasdaq bell when we listed, and giving that speech at the podium — it was a surreal moment," he tells InnovationMap. "I was excited but cautious at the same time. I mean, the life of a CEO of a public company at large, it's all about the process following a process, the regulations, the administration of the public company, the filings, the reportings — it can feel daunting. I have to rise to the occasion to tackle that in this the next stage of the company." Read more.

​Josh Teekell, founder and CEO of SmartAC.com

Josh Teekell joins the Houston Innovators Podcast to discuss the latest from his company, which just closed its series B. Photo courtesy

A Houston startup that combines unique sensor technology with software analysis has raised its next round of funding to — according to Founder and CEO Josh Teekell — turbocharge its sales.

SmartAC.com's sensors can monitor all aspects of air conditioning units and report back any issues, meaning homeowners have quicker and less costly repairs. Teekell says he's focused on sales, and he's going to do that with the $22 million raised in the series B round that closed this month. He says the company will also grow its team that goes out to deploy the technology and train the contractors on the platform.

"This funding really buys us a couple years of runway through the end of next year and allows us to focus on getting to cash flow breakeven, which is right around our wheelhouse of our abilities here in the next 12 months," Teekell says. "In general, we've accomplished everything we'd be able to accomplish on the hardware side, and now it's just about deployment." Read more.

Zhifeng Ren, director of the Texas Center for Superconductivity at UH

A team of researchers out of the Texas Center for Superconductivity at the University of Houston has discovered a faster way of transportation. Photo via UH.edu

Researchers at the University of Houston and in Germany released a proof-of-concept paper this month that uncovers a new, fuel efficient means of transportation that they say could one day make air travel and traditional freight transport obsolete.

"I call it a world-changing technology,” Zhifeng Ren, director of the Texas Center for Superconductivity at UH and author of the paper, said in a statement.

Published in the journal APL Energy, the paper demonstrates a new way of using superconductors to move vehicles along existing highways while transporting liquified hydrogen at the same time. Until now, the costs of using superconductivity for transportation has held back innovation in the field. This model also reduces the need for a separate specialized pipeline system to transport liquified hydrogen that's able to keep the fuel source at minus 424 degrees Fahrenheit. Read more.

A team of researchers out of the Texas Center for Superconductivity at the University of Houston has discovered a faster way of transportation. Photo via UH.edu

Houston researchers identify new tech for unprecedented transportation speeds

zoom, zoom

Researchers at the University of Houston and in Germany released a proof-of-concept paper this month that uncovers a new, fuel efficient means of transportation that they say could one day make air travel and traditional freight transport obsolete.

"I call it a world-changing technology,” Zhifeng Ren, director of the Texas Center for Superconductivity at UH and author of the paper, said in a statement.

Published in the journal APL Energy, the paper demonstrates a new way of using superconductors to move vehicles along existing highways while transporting liquified hydrogen at the same time. Until now, the costs of using superconductivity for transportation has held back innovation in the field. This model also reduces the need for a separate specialized pipeline system to transport liquified hydrogen that's able to keep the fuel source at minus 424 degrees Fahrenheit.

The model uses a similar concept to what's behind already existing magnetically levitating trains that operate on a magnetized rail, with superconductors embedded in the train's undercarriage. In Ren's model, superconductors would be embedded into existing highway infrastructure and magnets added to the undercarriages of vehicles. Liquified hydrogen would be used to cool the superconductor highway as vehicles move across it.

The idea could apply to trains, cargo trucks, and even personal cars, according to the paper. Better yet, the vehicles could travel up to 400 mph while on the highway. Drivers would then use the vehicle's traditional or electric motor once they exit.

"Instead of 75 mph, you could go 400 mph, from Houston to Los Angeles, or Houston to New York in just a few hours," Ren said in a statement.

Ren adds that this method would also require drivers to consume less fuel or power, cutting down on cost and environmental impact.

Technical and economic details still need to be addressed. But Ren believes "the project’s potential long-term economic and environmental benefits, would outweigh the upfront costs," according to a statement.

The paper joins a number of other innovative concepts coming out of UH in recent months. Recently, a research team at the university upgraded at-home rapid COVID-19 testing to make results more detectable via glow-in-the-dark materials.

Late last year the university also opened its

new tech transfer facility, and early this year it signed an agreement with India to bring a data center focused on energy to campus.


cropfilter_vintageloyaltyshopping_cartlocal_librarydeleteThe illustration shows the theorized superconducting highway for energy transport and storage and superconductor levitation. Image via UH.edu

UH has found a way to instantly zap COVID-10. Andriy Onufriyenko/Getty Images

University of Houston designs device that instantly kills COVID-19

ZAPPING COVID-19

While the world rushes to find a COVID-19 vaccine, scientists from the University of Houston have found a way to trap and kill the virus — instantly.

The team has designed a "catch and kill" air filter that can nullify the virus responsible for COVID-19. Researchers reported that tests at the Galveston National Laboratory found 99.8 percent of the novel SARS-CoV-2 — which causes COVID-19 — was killed in a single pass through the filter.

Zhifeng Ren, director of the Texas Center for Superconductivity at UH, collaborated with Monzer Hourani, CEO of Medistar, a Houston-based medical real estate development firm, plus other researchers to design the filter, which is described in a paper published in Materials Today Physics.

Researchers were aware the virus can remain in the air for about three hours, which required a filter that could quickly remove it. The added pressure of businesses reopening created an urgency in controlling the spread of the virus in air conditioned spaces, according to UH.

Meanwhile, to scorch the virus — which can't survive above around 158 degrees Fahrenheit — researchers instilled a heated filter. By blasting the temperature to around 392 F, they were able to kill the virus almost instantly.

The filter also killed 99.9 percent of the anthrax spores, according to researchers.

A prototype was built by a local workshop and first tested at Ren's lab for the relationship between voltage/current and temperature; it then went to the Galveston lab to be tested for its ability to kill the virus. Ren says it satisfies the requirements for conventional heating, ventilation and air conditioning (HVAC) systems.

"This filter could be useful in airports and in airplanes, in office buildings, schools and cruise ships to stop the spread of COVID-19," said Ren, MD Anderson Chair Professor of Physics at UH and co-corresponding author for the paper, in a statement. "Its ability to help control the spread of the virus could be very useful for society."

Medistar executives are also proposing a desk-top model, capable of purifying the air in an office worker's immediate surroundings, Ren added.

Developers have called for a phased roll-out of the device, with a priority on "high-priority venues, where essential workers are at elevated risk of exposure — particularly schools, hospitals and health care facilities, as well as public transit environs such as airplanes."

The hope, developers add, is that the filter will protect frontline workers in essential industries and allow nonessential workers to return to public work spaces.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

5 Houston scientists named winners of prestigious Hill Prizes 2026

prized research

Five Houston scientists were recognized for their "high-risk, high-reward ideas and innovations" by Lyda Hill Philanthropies and the Texas Academy of Medicine, Engineering, Science and Technology (TAMEST).

The 2026 Hill Prizes provide seed funding to top Texas researchers. This year's prizes were given out in seven categories, including biological sciences, engineering, medicine, physical sciences, public health and technology, and the new artificial intelligence award.

Each recipient’s institution or organization will receive $500,000 in direct funding from Dallas-based Lyda Hill Philanthropies. The organization has also committed to giving at least $1 million in discretionary research funding on an ad hoc basis for highly-ranked applicants who were not selected as recipients.

“It is with great pride that I congratulate this year’s Hill Prizes recipients. Their pioneering spirit and unwavering dedication to innovation are addressing some of the most pressing challenges of our time – from climate resilience and energy sustainability to medical breakthroughs and the future of artificial intelligence,” Lyda Hill, founder of Lyda Hill Philanthropies, said in a news release.

The 2026 Houston-area recipients include:

Biological Sciences: Susan M. Rosenberg, Baylor College of Medicine

Rosenberg and her team are developing ways to fight antibiotic resistance. The team will use the funding to screen a 14,000-compound drug library to identify additional candidates, study their mechanisms and test their ability to boost antibiotic effectiveness in animal models. The goal is to move toward clinical trials, beginning with veterans suffering from recurrent infections.

Medicine: Dr. Raghu Kalluri, The University of Texas MD Anderson Cancer Center

Kalluri is developing eye drops to treat age-related macular degeneration (AMD), the leading cause of vision loss globally. Kalluri will use the funding to accelerate studies and support testing for additional ocular conditions. He was also named to the National Academy of Inventors’ newest class of fellows last month.

Engineering: Naomi J. Halas, Rice University

Co-recipeints: Peter J. A. Nordlander and Hossein Robatjazi, Rice University

Halas and her team are working to advance light-driven technologies for sustainable ammonia synthesis. The team says it will use the funding to improve light-driven catalysts for converting nitrogen into ammonia, refine prototype reactors for practical deployment and partner with industry collaborators to advance larger-scale applications. Halas and Nordlander are co-founders of Syzygy Plasmonics, and Robatjazi serves as vice president of research for the company.

The other Texas-based recipients include:

  • Artificial Intelligence: Kristen Grauman, The University of Texas at Austin
  • Physical Sciences: Karen L. Wooley, Texas A&M University; Co-Recipient: Matthew Stone, Teysha Technologies
  • Public Health: Dr. Elizabeth C. Matsui, The University of Texas at Austin and Baylor College of Medicine
  • Technology: Kurt W. Swogger, Molecular Rebar Design LLC; Co-recipients: Clive Bosnyak, Molecular Rebar Design, and August Krupp, MR Rubber Business and Molecular Rebar Design LLC

Recipients will be recognized Feb. 2 during the TAMEST 2026 Annual Conference in San Antonio. They were determined by a committee of TAMEST members and endorsed by a committee of Texas Nobel and Breakthrough Prize Laureates and approved by the TAMEST Board of Directors.

“On behalf of TAMEST, we are honored to celebrate the 2026 Hill Prizes recipients. These outstanding innovators exemplify the excellence and ambition of Texas science and research,” Ganesh Thakur, TAMEST president and a distinguished professor at the University of Houston, added in the release. “Thanks to the visionary support of Lyda Hill Philanthropies, the Hill Prizes not only recognize transformative work but provide the resources to move bold ideas from the lab to life-changing solutions. We are proud to support their journeys and spotlight Texas as a global hub for scientific leadership.”

Investment bank opens new Houston office focused on energy sector

Investment bank Cohen & Co. Capital Markets has opened a Houston office to serve as the hub of its energy advisory business and has tapped investment banking veteran Rahul Jasuja as the office’s leader.

Jasuja joined Cohen & Co. Capital Markets, a subsidiary of financial services company Cohen & Co., as managing director, and head of energy and energy transition investment banking. Cohen’s capital markets arm closed $44 billion worth of deals last year.

Jasuja previously worked at energy-focused Houston investment bank Mast Capital Advisors, where he was managing director of investment banking. Before Mast Capital, Jasuja was director of energy investment banking in the Houston office of Wells Fargo Securities.

“Meeting rising [energy] demand will require disciplined capital allocation across traditional energy, sustainable fuels, and firm, dispatchable solutions such as nuclear and geothermal,” Jasuja said in a news release. “Houston remains the center of gravity where capital, operating expertise, and execution come together to make that transition investable.”

The Houston office will focus on four energy verticals:

  • Energy systems such as nuclear and geothermal
  • Energy supply chains
  • Energy-transition fuel and technology
  • Traditional energy
“We are making a committed investment in Houston because we believe the infrastructure powering AI, defense, and energy transition — from nuclear to rare-earth technology — represents the next secular cycle of value creation,” Jerry Serowik, head of Cohen & Co. Capital Markets, added in the release.

---

This article originally appeared on EnergyCaptialHTX.com.

MD Anderson makes AI partnership to advance precision oncology

AI Oncology

Few experts will disagree that data-driven medicine is one of the most certain ways forward for our health. However, actually adopting it comes at a steep curve. But what if using the technology were democratized?

This is the question that SOPHiA GENETICS has been seeking to answer since 2011 with its universal AI platform, SOPHiA DDM. The cloud-native system analyzes and interprets complex health care data across technologies and institutions, allowing hospitals and clinicians to gain clinically actionable insights faster and at scale.

The University of Texas MD Anderson Cancer Center has just announced its official collaboration with SOPHiA GENETICS to accelerate breakthroughs in precision oncology. Together, they are developing a novel sequencing oncology test, as well as creating several programs targeted at the research and development of additional technology.

That technology will allow the hospital to develop new ways to chart the growth and changes of tumors in real time, pick the best clinical trials and medications for patients and make genomic testing more reliable. Shashikant Kulkarni, deputy division head for Molecular Pathology, and Dr. J. Bryan, assistant professor, will lead the collaboration on MD Anderson’s end.

“Cancer research has evolved rapidly, and we have more health data available than ever before. Our collaboration with SOPHiA GENETICS reflects how our lab is evolving and integrating advanced analytics and AI to better interpret complex molecular information,” Dr. Donna Hansel, division head of Pathology and Laboratory Medicine at MD Anderson, said in a press release. “This collaboration will expand our ability to translate high-dimensional data into insights that can meaningfully advance research and precision oncology.”

SOPHiA GENETICS is based in Switzerland and France, and has its U.S. offices in Boston.

“This collaboration with MD Anderson amplifies our shared ambition to push the boundaries of what is possible in cancer research,” Dr. Philippe Menu, chief product officer and chief medical officer at SOPHiA GENETICS, added in the release. “With SOPHiA DDM as a unifying analytical layer, we are enabling new discoveries, accelerating breakthroughs in precision oncology and, most importantly, enabling patients around the globe to benefit from these innovations by bringing leading technologies to all geographies quickly and at scale.”