A Houston founder is introducing you to ema — a GPT-based chat platform and your new best friend in women's health. Photo via Canva

Amanda Ducach set out to create a platform where mothers could connect with each other socially, but when she launched SocialMama just ahead of a global pandemic, she soon learned there was a bigger market need for access to information surrounding women's health — from fertility to menopause.

After pivoting her femtech platform to include women's health experts, she realized her technology wasn't able to completely support growing user base. The platform, which was called SocialMama, saw users engaging with experts in similar ways — and as Ducach looked into growing the platforms users, she realized that 24/7 access to experts was going to be hard to scale.

"We noticed that most of these conversations were repetitive," Ducach tells InnovationMap. "You had women asking an expert about tracking ovulation a hundred times a day. Having an OBGYN answer that question a hundred times a day was crazy and just not scalable."

Ducach says that about 16 months ago, her team took a step back to recreate the platform incorporating GPT technology. GPT stands for generative pre-trained transformer, and is a family of artificial intelligence language models most recently made popular but ChatGPT developed by OpenAI.

Now, after building out the platform, Ducach's company has rebranded to ema. The AI-based chat tool — named from the three letters in the middle of "female" — is meant to feel like texting "your childhood best friend who became an OBGYN physician," Ducach says. Not only can the chat provide crucial medical information, but it has a memory and can pick up conversations where they left off to be a constant resource to users.

The new platform, deemed ema, operates as an AI-based chat for women to engage with. Screenshot courtesy of ema

"Ema can answer everything from, 'how do I improve my baby's latch,' to 'how to I get a diabetic-friendly brownie recipe,' to 'give me an affirmation that's spoken like Snoop Dog because I'm feeling sad today,'" Ducach says.

Ducach first described the evolution of the company to AI-based communication last summer on the Houston Innovators Podcast. Now, the platform is gearing up for its launch next month and plans to raise seed funding this year to double her current team of 10 people to support the company's growth. Ducach, who was accepted into the Techstars Austin program in 2021, also says she's looking for more beta users in the meantime, and those interested should reach out to her or her team.

Ultimately, Ducach says the mission of ema is to democratize access to women's health care so that women feel supported and just a few taps away from important information.

"Barriers to care for women who face socioeconomic disparities is where you see the need for change," Ducach says. "For us, it's reducing those barriers of care. Ema is always in your pocket. You have access to her 24/7. The way that ema is really structured and her purpose is to catch red flags so that we can then help the female user get to positive health outcomes."

Amanda Ducach founded the company in 2019. Photo via Twitter

One way to move the needle on developing femtech, according to this expert, is to make sure women have a seat at the table at venture firms funding the innovations. Photo via Getty Images

The growing femtech industry needs more attention — and funds, says this Houston expert

guest column

Femtech is a term that is generally given to medical products, software, and technologies that aim to enhance the health and wellbeing of women. But when people think of femtech, things like period tracker apps and pregnancy tests are usually the first things to come to mind. While those developments are important and used regularly, there are other diseases and chronic issues affecting women that need to be talked about as well.

The concept of femtech shouldn't replace "women's health" which considers broader issues, such as endometriosis and PCOS, as well as other conditions — such as heart disease — common to both men and women but clinically different in the latter. Femtech investors, manufacturers, and health advocates should focus on creating solutions for all issues and diseases that affect women, not just the most obvious.

However, more education and awareness is necessary to bring these issues to the forefront, as many people are not aware about how certain chronic issues and diseases affect women differently than they may affect men. For example, heart disease is the leading cause of death in women and men, but if you close your eyes and envision someone having a heart attack — do you see a man? Or a woman? Probably a man. And you're not alone. Because so much of our healthcare research has focused primarily on men, we are programmed to think of certain conditions affecting men predominantly when they are truly major health issues for both.

Similarly, when it comes to memory loss, women have a 1 in 5 chance of developing Alzheimer's disease compared to men being 1 in 11. Additionally, out of the more than 5 million people living with Alzheimer's in the U.S., 3.2 million are women. While there aren't as many Femtech-related products or solutions focused on these issues, there should be, especially in a rapidly growing industry.

According to the U.S. Clinical Laboratory Test Market, the femtech industry is expected to grow at a compound annual growth rate of more than 13 percent. Frost and Sullivan predicts the global Femtech market revenue will reach $1.1 billion by 2024, and BIS Research forecasts that by 2030 the sector will hit $3.04 billion. But even with great momentum, there is a knowledge gap that needs to be bridged. Overall, the industry has been underfunded and many opportunities have been overlooked, not necessarily because of gender. But, because investors in the industry are predominantly men, there is a lack of education and understanding of why these products are needed.

A solution would be for more women to become investors. Women have the personal experience and a better understanding of how these products will benefit them, which allows them to better understand the story told, increasing the chance the product will be funded and brought to market. To fund life-changing inventions for women, we need to have women involved, which means we need women to step into the investment community. Until more women get a seat at the investment table, women in femtech who are looking for investors need to be prepared to share real life stories and provide as much information as possible to have a better chance of securing funding.

The femtech industry is growing, and we will continue to see innovative devices and apps brought to market. With more education, a better understanding of other issues that affect women, and more female investors, the industry has the potential to take its growth to a new level.

------

Isabella Schmitt currently serves as the director of regulatory affairs at Proxima Clinical Research Inc.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston organizations launch collaborative center to boost cancer outcomes

new to HOU

Rice University's new Synthesis X Center officially launched last month to bring together experts in cancer care and chemistry.

The center was born out of what started about seven years ago as informal meetings between Rice chemist Han Xiao's research group and others from the Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center at the Baylor College of Medicine. The level of collaboration between the two teams has grown significantly over the years, and monthly meetings now draw about 100 participants from across disciplines, fields and Houston-based organizations, according to a statement from Rice.

Researchers at the new SynthX Center will aim to turn fundamental research into clinical applications and make precision adjustments to drug properties and molecules. It will focus on improving cancer outcomes by looking at an array of factors, including prevention and detection, immunotherapies, the use of artificial intelligence to speed drug discovery and development, and several other topics.

"At Rice, we are strong on the fundamental side of research in organic chemistry, chemical biology, bioengineering and nanomaterials,” Xiao says in the statement. “Starting at the laboratory bench, we can synthesize therapeutic molecules and proteins with atom-level precision, offering immense potential for real-world applications at the bedside ... But the clinicians and fundamental researchers don’t have a lot of time to talk and to exchange ideas, so SynthX wants to serve as the bridge and help make these connections.”

SynthX plans to issue its first merit-based seed grants to teams with representatives from Baylor and Rice this month.

With this recognition from Rice, the teams from Xiao's lab and the TMC will also be able to expand and formalize their programs. They will build upon annual retreats, in which investigators can share unpublished findings, and also plan to host a national conference, the first slated for this fall titled "Synthetic Innovations Towards a Cure for Cancer.”

“I am confident that the SynthX Center will be a great resource for both students and faculty who seek to translate discoveries from fundamental chemical research into medical applications that improve people’s lives,” Thomas Killian, dean of the Wiess School of Natural Sciences, says in the release.

Rice announced that it had invested in four other research centers along with SynthX last month. The other centers include the Center for Coastal Futures and Adaptive Resilience, the Center for Environmental Studies, the Center for Latin American and Latinx Studies and the Rice Center for Nanoscale Imaging Sciences.

Earlier this year, Rice also announced its first-ever recipients of its One Small Step Grant program, funded by its Office of Innovation. The program will provide funding to faculty working on "promising projects with commercial potential," according to the website.

Houston physicist scores $15.5M grant for high-energy nuclear physics research

FUTURE OF PHYSICS

A team of Rice University physicists has been awarded a prestigious grant from the Department of Energy's Office of Nuclear Physics for their work in high-energy nuclear physics and research into a new state of matter.

The five-year $15.5 million grant will go towards Rice physics and astronomy professor Wei Li's discoveries focused on the Compact Muon Solenoid (CMS), a large, general-purpose particle physics detector built on the Large Hadron Collider (LHC) at CERN, a European organization for nuclear research in France and Switzerland. The work is "poised to revolutionize our understanding of fundamental physics," according to a statement from Rice.

Li's team will work to develop an ultra-fast silicon timing detector, known as the endcap timing layer (ETL), that will provide upgrades to the CMS detector. The ETl is expected to have a time resolution of 30 picoseconds per particle, which will allow for more precise time-of-flight particle identification.

The Rice team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas. Photo via Rice.edu

This will also help boost the performance of the High-Luminosity Large Hadron Collider (HL-LHC), which is scheduled to launch at CERN in 2029, allowing it to operate at about 10 times the luminosity than originally planned. The ETL also has applications for other colliders apart from the LHC, including the DOE’s electron-ion collider at the Brookhaven National Laboratory in Long Island, New York.

“The ETL will enable breakthrough science in the area of heavy ion collisions, allowing us to delve into the properties of a remarkable new state of matter called the quark-gluon plasma,” Li explained in a statement. “This, in turn, offers invaluable insights into the strong nuclear force that binds particles at the core of matter.”

The ETL is also expected to aid in other areas of physics, including the search for the Higgs particle and understanding the makeup of dark matter.

Li is joined on this work by co-principal investigator Frank Geurts and researchers Nicole Lewis and Mike Matveev from Rice. The team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas.

Last year, fellow Rice physicist Qimiao Si, a theoretical quantum physicist, earned the prestigious Vannevar Bush Faculty Fellowship grant. The five-year fellowship, with up to $3 million in funding, will go towards his work to establish an unconventional approach to create and control topological states of matter, which plays an important role in materials research and quantum computing.

Meanwhile, the DOE recently tapped three Houston universities to compete in its annual startup competition focused on "high-potential energy technologies,” including one team from Rice.

------

This article originally ran on EnergyCapital.