According to a report from National Nurses United, 81.6 percent of nurses said they experienced workplace violence in 2023.

Ask any healthcare worker, and they will have their own story of workplace violence. In the early years of my career, I narrowly missed encountering a gunman in the hospital ER solely because I forgot something and had to return upstairs. While tragedy was avoided in my case, too often, it is not. Such incidents are not isolated; in fact, they are becoming disturbingly common.

According to a report from National Nurses United, 81.6 percent of nurses said they experienced workplace violence in 2023.

As a physician, providing excellent patient care has always been my priority; however, any type of workplace violence disrupts quality care. When the supposedly safe spaces of healing and learning become targets, we must look at ways beyond hardening the exteriors to help prevent such violence within buildings.

For our healthcare systems, the answer may lie within our schools.

Since we lost our daughter and 16 of her classmates and staff at Marjory Stoneman Douglas High School in Parkland, Florida, six years ago, my wife and I have been advocating for enhanced school safety measures for classrooms across the nation.

Seven states have passed Alyssa's Law, named for our daughter, which requires the installation of wearable panic alarm technology in education settings. These alarms, which instantly link every classroom to emergency personnel while also providing mass communication to all staff, serve as a lifeline in times of crisis. These wearable panic alarms are not just outfitted for classrooms: they can be utilized in any workplace setting, including a healthcare system.

Despite their difference in purpose, healthcare facilities and schools share the unique properties of community spaces. Healthcare facilities are safe havens for those who need healing and rest within our community. No one should fear for their safety going to the doctor. Just as lawmakers have rethought and revised school safety requirements, they should do the same for healthcare facilities. Wearable safety technology has emerged as a formidable solution to this pressing issue.

Wearable, mobile duress badge technology is tailor-made for the unique challenges faced by healthcare workers. It is discrete, easy to use, and can be customizable for each healthcare campus. Some duress badge providers have technology that equips nurses, doctors and staff with badges that display their location and the ability to signal the level of emergency with a push of a button. They can use one badge for all campuses within a healthcare system, and they do not have to wait to get in touch with a hospital operator to “sound the alarm” or risk escalating a situation by lunging for a wall-mounted panic button.

Mobile panic alarms offer a nuanced and efficient response mechanism. Whether a minor incident or a life-threatening crisis, healthcare professionals can instantly summon help, ensuring a swifter and more coordinated response.

Texas was one of the first states to take on this alarming trend of workplace violence by passing SB240 last session, mandating facilities to establish a workplace violence prevention plan. Similar legislation is playing out in other states, becoming a nationwide movement.

I know healthcare facilities' budgets are tight these days with unprecedented rising costs of care and lower reimbursement rates. Still, through my personal journey in advocating for safety improvements in our educational institutions, I have learned one thing: you must invest in the future.

The adoption of wearable panic alarms is not just a security upgrade; it's a commitment to the well-being of those who dedicate their lives to provide healing and care. It's about protecting our community spaces. Like any other, the healthcare environment should be a sanctuary, free from the fear of violence. As Alyssa’s Law gains traction nationally, the spotlight now turns to healthcare facilities to embrace this critical technology.

Time, as we know too well, equals life. Swift action can be the difference between tragedy and survival. Investing in wearable panic alarm technology is an investment in our healthcare workforce's safety, resilience, and mental well-being. As we advocate for students to have a safe place to thrive, I am doing the same for healthcare places. The time has come to make our healthcare facilities safe.

------

Dr. Ilan Alhadeff is the father of Alyssa Alhadeff, a victim of the February 14, 2018, school shooting at Marjory Stoneman Douglas High School, and co-founder of Make Our Schools Safe, a 501(c)(3) nonprofit organization dedicated to improving school safety.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based HPE wins $931M contract to upgrade military data centers

defense data centers

Hewlett Packard Enterprise (HPE), based in Spring, Texas, which provides AI, cloud, and networking products and services, has received a $931 million contract to modernize data centers run by the federal Defense Information Systems Agency.

HPE says it will supply distributed hybrid multicloud technology to the federal agency, which provides combat support for U.S. troops. The project will feature HPE’s Private Cloud Enterprise and GreenLake offerings. It will allow DISA to scale and accelerate communications, improve AI and data analytics, boost IT efficiencies, reduce costs and more, according to a news release from HPE.

The contract comes after the completion of HPE’s test of distributed hybrid multicloud technology at Defense Information Systems Agency (DISA) data centers in Mechanicsburg, Pennsylvania, and Ogden, Utah. This technology is aimed at managing DISA’s IT infrastructure and resources across public and private clouds through one hybrid multicloud platform, according to Data Center Dynamics.

Fidelma Russo, executive vice president and general manager of hybrid cloud at HPE, said in a news release that the project will enable DISA to “deliver innovative, future-ready managed services to the agencies it supports that are operating across the globe.”

The platform being developed for DISA “is designed to mirror the look and feel of a public cloud, replicating many of the key features” offered by cloud computing businesses such as Amazon Web Services (AWS), Microsoft Azure and Google Cloud Platform, according to The Register.

In the 1990s, DISA consolidated 194 data centers into 16. According to The Register, these are the U.S. military’s most sensitive data centers.

More recently, in 2024, the Fort Meade, Maryland-based agency laid out a five-year strategy to “simplify the network globally with large-scale adoption of command IT environments,” according to Data Center Dynamics.

Astros and Rockets launch new streaming service for Houston sports fans

Sports Talk

Houston sports fans now have a way to watch their favorite teams without a cable or satellite subscription. Launched December 3, the Space City Home Network’s SCHN+ service allows consumers to watch the Houston Astros and Houston Rockets via iOS, Apple TV, Android, Amazon Fire TV, or web browser.

A subscription to SCHN+ allows sports fans to watch all Astros and Rockets games, as well as behind-the-scenes features and other on-demand content. It’s priced at $19.99 per month or $199.99 annually (plus tax). People who watch Space City Network Network via their existing cable or satellite service will be able to access SCHN+ at no additional charge.

As the Houston Chronicle notes, the Astros and Rockets were the only MLB and NBA teams not to offer a direct-to-consumer streaming option.

“We’re thrilled to offer another great option to ensure fans have access to watch games, and the SCHN+ streaming app makes it easier than ever to cheer on the Rockets,” Rockets alternate governor Patrick Fertitta said in a statement.

“Providing fans with a convenient way to watch their favorite teams, along with our network’s award-winning programming, was an essential addition. This season feels special, and we’re committed to exploring new ways to elevate our broadcasts for Rockets fans to enjoy.”

Astros owner Jim Crane echoed Feritta’s comments, adding, “Providing fans options on how they view our games is important as we continue to grow the game – we want to make it accessible to as large an audience as possible. We are looking forward to the 2026 season and more Astros fans watching our players compete for another championship.”

SCHN+ is available to customers in Texas; Louisiana; Arkansas; Oklahoma; and the following counties in New Mexico: Dona Ana, Eddy, Lea, Chaves, Roosevelt, Curry, Quay, Union, and Debaca. Fans outside these areas will need to subscribe to the NBA and MLB out-of-market services.

---

This article originally appeared on CultureMap.com.

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.