Nai-Hui Chia, an assistant professor of computer science at Rice, was recognized for his research on Hamiltonian simulations, a method for representing the motion of moving particles. Photo via Rice.edu

A Rice University quantum computer scientist was one of 78 global professors to be presented with a 2023 Google Scholar award, the university announced this month.

Nai-Hui Chia, an assistant professor of computer science at Rice, was recognized for his research on Hamiltonian simulations, a method for representing the motion of moving particles. Chia aims to understand if quantum computers or machines can simulate a "Hamiltonian matrix" with a shorter evolution time.

"We call this fast-forwarding for a Hamiltonian simulation,” Chia says in a statement.

Chia aims to use the funds from Google to discover Hamiltonians that can be fast-forwarded using parallelism or classical computation, according to Rice. He will present his current work on Hamiltonians and their connection to cryptology in July at the 2023 Computational Complexity Conference in Warwick, UK.

The Google Research Scholar program grants funds of up to $60,000 to support professors' research around the world. This year's cohort works in fields ranging from algorithms and optimization to natural language processing to health research.

Three other Texas researchers were awarded funds in the 2023 cohort.

The University of Texas at Austin's Jon Tamir was awarded for his work in applied sciences. Atlas Wang, also from UT, was awarded in the machine learning and data mining category. Shenglong Xu, from Texas A&M University, joined Chia in the quantum computing category.

Tech behemoth Google has awarded funds to several Houston innovators in recent years.

Last summer the company named AnswerBite, Boxes and Ease to its inaugural cohort of the Google for Startups Latino Founders Fund. Selected companies received an equity-free $100,000 investment, as well as programming and support from Google.

In September 2022, ChurchSpace and Enrichly were named part of the Google for Startups Black Founders Fund. The companies also received $100,000 non-dilutive awards along with mentoring and support.

The new endowment will be available beginning in fall 2020. University of Texas at Austin/Facebook

University of Texas at Austin to provide free tuition to families making less than $65,000

higher ed

The University of Texas at Austin is taking a big step to combat the increasing costs of higher education. On July 9, the system's Board of Regents voted to establish a $160 million endowment to help Texas families ease the burden of funding a UT education.

Beginning in fall 2020, the endowment will cover in-state tuition and fees for students from families that earn up to $65,000 a year, or about 8,600 undergraduates a year. (Texas' median income was $59,206 in 2017, according to the most recent available numbers.)

Under the current Texas Advance Commitment, full tuition is only provided to families earning up to $30,000 per year.

Along with covering costs for families making $65,000 or less, the new endowment will provide "tuition support" for families making $125,000 or less, or about 5,700 students.

The $160 million endowment is a distribution of the state's Permanent University Fund, which "includes money from oil and gas royalties earned on state-owned land in West Texas," according to a release.

"There is no greater engine of social and economic mobility than a college degree, and this initiative ensures that more Texans will benefit from a high-quality UT Austin education," said Chancellor James B. Milliken, in a release.

The decision is undoubtedly a banner one for UT President Gregory Fenves, who has spent the majority of his tenure working on affordability issues. In a release, Fenves echoed Milliken, calling the fund an "invest[ment] in the future of our great state."

"I am grateful to the UT System Board of Regents and Chairman Kevin Eltife for prioritizing students and investing in the future of our great state," said Fenves. "This new endowment will go a long way toward making our university affordable for talented Texas students from every background and region."

------

This story originally appeared on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers create AI model to tap into how brain activity relates to illness

brainiac

Houston researchers are part of a team that has created an AI model intended to understand how brain activity relates to behavior and illness.

Scientists from Baylor College of Medicine worked with peers from Yale University, University of Southern California and Idaho State University to make Brain Language Model, or BrainLM. Their research was published as a conference paper at ICLR 2024, a meeting of some of deep learning’s greatest minds.

“For a long time we’ve known that brain activity is related to a person’s behavior and to a lot of illnesses like seizures or Parkinson’s,” Dr. Chadi Abdallah, associate professor in the Menninger Department of Psychiatry and Behavioral Sciences at Baylor and co-corresponding author of the paper, says in a press release. “Functional brain imaging or functional MRIs allow us to look at brain activity throughout the brain, but we previously couldn’t fully capture the dynamic of these activities in time and space using traditional data analytical tools.

"More recently, people started using machine learning to capture the brain complexity and how it relates it to specific illnesses, but that turned out to require enrolling and fully examining thousands of patients with a particular behavior or illness, a very expensive process,” Abdallah continues.

Using 80,000 brain scans, the team was able to train their model to figure out how brain activities related to one another. Over time, this created the BrainLM brain activity foundational model. BrainLM is now well-trained enough to use to fine-tune a specific task and to ask questions in other studies.

Abdallah said that using BrainLM will cut costs significantly for scientists developing treatments for brain disorders. In clinical trials, it can cost “hundreds of millions of dollars,” he said, to enroll numerous patients and treat them over a significant time period. By using BrainLM, researchers can enroll half the subjects because the AI can select the individuals most likely to benefit.

The team found that BrainLM performed successfully in many different samples. That included predicting depression, anxiety and PTSD severity better than other machine learning tools that do not use generative AI.

“We found that BrainLM is performing very well. It is predicting brain activity in a new sample that was hidden from it during the training as well as doing well with data from new scanners and new population,” Abdallah says. “These impressive results were achieved with scans from 40,000 subjects. We are now working on considerably increasing the training dataset. The stronger the model we can build, the more we can do to assist with patient care, such as developing new treatment for mental illnesses or guiding neurosurgery for seizures or DBS.”

For those suffering from neurological and mental health disorders, BrainLM could be a key to unlocking treatments that will make a life-changing difference.

Houston-based cleantech unicorn named among annual top disruptors

on the rise

Houston-based biotech startup Solugen is making waves among innovative companies.

Solugen appears at No. 36 on CNBC’s annual Disruptor 50 list, which highlights private companies that are “upending the classic definition of disruption.” Privately owned startups founded after January 1, 2009, were eligible for the Disruptor 50 list.

Founded in 2016, Solugen replaces petroleum-based products with plant-derived substitutes through its Bioforge manufacturing platform. For example, it uses engineered enzymes and metal catalysts to convert feedstocks like sugar into chemicals that have traditionally been made from fossil fuels, such as petroleum and natural gas.

Solugen has raised $643 million in funding and now boasts a valuation of $2.2 billion.

“Sparked by a chance medical school poker game conversation in 2016, Solugen evolved from prototype to physical asset in five years, and production hit commercial scale shortly thereafter,” says CNBC.

Solugen co-founders Gaurab Chakrabarti and Sean Hunt received the Entrepreneur of The Year 2023 National Award, presented by professional services giant EY.

“Solugen is a textbook startup launched by two partners with $10,000 in seed money that is revolutionizing the chemical refining industry. The innovation-driven company is tackling impactful, life-changing issues important to the planet,” Entrepreneur of The Year judges wrote.

In April 2024, Solugen broke ground on a Bioforge biomanufacturing plant in Marshall, Minnesota. The 500,000-square-foot, 34-acre facility arose through a Solugen partnership with ADM. Chicago-based ADM produces agricultural products, commodities, and ingredients. The plant is expected to open in the fall of 2025.

“Solugen’s … technology is a transformative force in sustainable chemical manufacturing,” says Hunt. “The new facility will significantly increase our existing capabilities, enabling us to expand the market share of low-carbon chemistries.”

Houston cleantech company tests ​all-electric CO2-to-fuel production technology

RESULTS ARE IN

Houston-based clean energy company Syzygy Plasmonics has successfully tested all-electric CO2-to-fuel production technology at RTI International’s facility at North Carolina’s Research Triangle Park.

Syzygy says the technology can significantly decarbonize transportation by converting two potent greenhouse gases, carbon dioxide and methane, into low-carbon jet fuel, diesel, and gasoline.

Equinor Ventures and Sumitomo Corp. of Americas sponsored the pilot project.

“This project showcases our ability to fight climate change by converting harmful greenhouse gases into fuel,” Trevor Best, CEO of Syzygy, says in a news release.

“At scale,” he adds, “we’re talking about significantly reducing and potentially eliminating the carbon intensity of shipping, trucking, and aviation. This is a major step toward quickly and cost effectively cutting emissions from the heavy-duty transport sector.”

At commercial scale, a typical Syzygy plant will consume nearly 200,000 tons of CO2 per year, the equivalent of taking 45,000 cars off the road.

“The results of this demonstration are encouraging and represent an important milestone in our collaboration with Syzygy,” says Sameer Parvathikar, director of renewable energy and energy storage at RTI.

In addition to the CO2-to-fuel demonstration, Syzygy's Ammonia e-Cracking™ technology has completed over 2,000 hours of performance and optimization testing at its plant in Houston. Syzygy is finalizing a site and partners for a commercial CO2-to-fuel plant.

Syzygy is working to decarbonize the chemical industry, responsible for almost 20 percent of industrial CO2 emissions, by using light instead of combustion to drive chemical reactions.

------

This article originally ran on EnergyCapital.