COVID-19 antibody research coming out of the University of Texas stars an unlikely participant: A llama named Winter. University of Texas at Austin/Facebook

In the race to find a treatment for the novel coronavirus, researchers at the University of Texas at Austin have announced a potential breakthrough — thanks to a llama.

Scientists from Texas' flagship university who have been collaborating with the National Institutes of Health and Ghent University in Belgium identified an antibody treatment that could potentially neutralize the virus that causes COVID-19.

The researchers detail their work in the May 5 edition of Cell, a scientific journal.

"This is one of the first antibodies known to neutralize SARS-CoV-2," said Jason McLellan, associate professor of molecular biosciences at UT Austin and co-senior author of the paper, in a release. (FYI, SARS-CoV-2 is referring to the virus that causes COVID-19.)

Using a Belgian llama named Winter, scientists were able to identify two antibodies the animal produces when it comes into contact with a foreign body (such as the coronavirus). The first is similar to a human antibody and the second is much smaller, about one-quarter of the size of the other.

This is Winter. Photo courtesy of University of Texas at Austin

Researchers were able to link two copies of this special llama antibody to create a new antibody. This new antibody binds tightly to a key protein on the coronavirus germ that causes COVID-19 and could possible be nebulized and put into an inhaler.

"That makes them potentially really interesting as a drug for a respiratory pathogen because you're delivering it right to the site of infection," said Daniel Wrapp, a UT graduate student in McLellan's lab and co-first author of the paper.

Unlike vaccines, which can take up to two months to take effect, antibody treatment can be used in more vulnerable populations as a way to fight off the virus.

"Vaccines have to be given a month or two before infection to provide protection," McLellan said. "With antibody therapies, you're directly giving somebody the protective antibodies and so, immediately after treatment, they should be protected. The antibodies could also be used to treat somebody who is already sick to lessen the severity of the disease."

From here, research turns to preclinical studies, using hamsters and primates for testing. If successful, they will move onto humans.

If you're wondering just how a group of researchers living in different parts of the globe were able to make this discovery seemingly overnight, that's because they've actually been working on it since 2016, when Winter was just 9 months old.

The experiment began as a way to develop vaccinations for two earlier versions of the coronavirus: SARS-CoV-1 and MERS-CoV. Their years of research allowed the scientists to pivot in recent months to isolating the protein in COVID-19.

As for Winter, she's now 4 years old and still lives with about 130 llamas on a farm in Belgium, likely unaware of her contribution to potentially altering the course of COVID-19 forever.

------

This article originally ran on CultureMap.

Coding camps continue to grow and expand in Houston. The most recent comes from the University of Texas. Getty Images

UT coding camp emerges in Houston as the city grows its tech and innovation ecosystem

Up to code

As Houston's innovation ecosystem grows, the need for tech talent grows too. It's why the University of Texas and workforce accelerator Trilogy Education decided to bring a series of coding boot camps designed to teach Houstonians the skills they need to excel in the fast-paced world of the tech economy to town.

"Too many working adults lack the skills to succeed in the digital economy," says Liliya Spinazzola, the senior director for professional education and strategic initiatives at the Texas Extended Campus of The University of Texas at Austin. "And that means that employers are lacking a talent pool."

The Houston Coding Boot Camp aims to change all that. The 24-week sessions teach web development and coding skills, allowing adults to take classes even as they're working. That kind of flexibility helps them increase their knowledge as they continue to build career paths.

Houston's seen a good amount of growth when it comes to new coding camps. Digital Crafts, for instance, grew from an inaugural class of eight students to 125 people in just two years. Women Who Code saw a need for female coders in Houston to have a network, and now the city has a newly launched chapter.

Student success
So far, 260 students have completed the programs, going on to work at companies such as JP Morgan, IBM, and Deloitte.

One of those is Rebecca Gemeinhardt, now a full stack developer at Shell. She graduated with her bachelor's in graphic arts from the Kansas City Art Institute in 2017, and found that she missed being in a classroom. When she started the boot camp, she was immediately drawn to the challenge the subject matter offered, as well as the flexible schedule.

"The boot camp was just as formidable as the curriculum promised but extremely fulfilling," she says. "Going into boot camp, I didn't tell anyone I was doing it — what if I struggled and couldn't get through it? I kept it a secret until I found the confidence to identify as a developer."

Once she completed the program, she was hired at Shell.

"My life had changed so much in just six months but definitely for the better," Gemeinhardt says. "By focusing on the ability to adopt new technologies, [the coding boot camp instructors] left us with the invaluable skill of being adaptable and fast-learning full stack developers. This has helped me immensely at my current position as we are always incorporating new languages to our architecture depending on individual project needs."

Filling the need
Spinazzola says the camps deliberately try to create environments that foster the level of problem solving and exploration Gemeinhardt describes. The program partners with employers to discover what skills are most needed, and tailors the curriculum to dovetail with them. She says the skills most in demand right now are coding, cyber security, IT project management, and digital marketing.

"We also look at job description data here in Texas to see what skills are listed," she says. "And while students are in the program, we have a robust network that engages with them upfront, talking to them about what jobs are out there. And we host career fairs where they can show off their portfolios and discuss their skills set with potential employers."

Spinazzola says that students come from all walks of life and employment backgrounds, and that 26 percent of the participants are women. With 25 students per boot camp session, the small classes make for deep instruction. UT offers between three and fours sessions in Houston each year. She says that she finds participants are looking to either break into the tech sector, learn new skills or re-train to be able to advance their careers. The average age of students is somewhere in the low-30s, she says.

"We had a student who owned a cooking school and wanted to start a new career," she says. "[Rebecca] trained as a graphic artist and wanted to be a developer. One student shut down his medical practice and says that he wanted to learn coding so that he could go work for a pharmaceutical company. To me, that's the beauty of this program. These skills are in demand, and our students are able to take what they already know and enhance their abilities to be able to take on new career paths."

The University of Texas System scooted up three spots from 2017. University of Texas at Austin/Facebook

University of Texas ranks as one of the world's most innovative schools

Hook 'em

A new ranking from Reuters has placed the University of Texas System among the world's most innovative universities.

According to an October 11 release, the Reuters Top 100: The World's Most Innovative Universities "identifies and ranks the educational institutions doing the most to advance science, invent new technologies and power new markets and industries." The UT System ranked No. 6 out of the 100 best in the world. The 2018 ranking is a jump up from its No. 9 spot in 2017.

In addition to the flagship University of Texas at Austin, the system is comprised of seven other public universities across the state as well as six health institutions. Reuters notes that because of how the UT System reports on innovation, it assessed the entire enterprise rather than individual universities.

As a whole, the UT System boasts an impressive number of accolades that helped it scoot up three spots. As Reuters notes, chief among these accolades is the National Science Foundation's $60 million grant to the Texas Advanced Computing Center at the University of Texas at Austin to build a supercomputer and the system's $2.7 billion in annual research expenditures. (Not to mention numerous Nobel Laureates among both faculty and alumni.)

Overall, the U.S. dominated the list, claiming 46 out of the 100 spots. Rounding out the top 10 for 2018 is: No. 1, Stanford University; No. 2, Massachusetts Institute of Technology; No. 3, Harvard University; No. 4, University of Pennsylvania; No. 5, University of Washington; No. 7, Belgium's KU Leuven, No. 8, U.K.'s Imperial College London; No. 9, University of North Carolina at Chapel Hill; and No. 10, Vanderbilt University.

---

This story originally appeared on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston foundation grants $27M to support Texas chemistry research

fresh funding

Houston-based The Welch Foundation has doled out $27 million in its latest round of grants for chemical research, equipment and postdoctoral fellowships.

According to a June announcement, $25.5 million was allocated for the foundation's longstanding research grants, which provide $100,000 per year in funding for three years to full-time, regular tenure or tenure-track faculty members in Texas. The foundation made 85 grants to faculty at 16 Texas institutions for 2025, including:

  • Michael I. Jacobs, assistant professor in the chemistry and biochemistry department at Texas State University, who is investigating the structure and thermodynamics of intrinsically disordered proteins, which could "reveal clues about how life began," according to the foundation.
  • Kendra K. Frederick, assistant professor in the biophysics department at The University of Texas Southwestern Medical Center, who is studying a protein linked to Parkinson’s disease.
  • Jennifer S. Brodbelt, professor in chemistry at The University of Texas at Austin, who is testing a theory called full replica symmetry breaking (fullRSB) on glass-like materials, which has implications for complex systems in physics, chemistry and biology.

Additional funding will be allocated to the Welch Postdoctoral Fellows of the Life Sciences Research Foundation. The program provides three-year fellowships to recent PhD graduates to support clinical research careers in Texas. Two fellows from Rice University and Baylor University will receive $100,000 annually for three years.

The Welch Foundation also issued $975,000 through its equipment grant program to 13 institutions to help them develop "richer laboratory experience(s)." The universities matched funds of $352,346.

Since 1954, the Welch Foundation has contributed over $1.1 billion for Texas-nurtured advancements in chemistry through research grants, endowed chairs and other chemistry-related ventures. Last year, the foundation granted more than $40.5 million in academic research grants, equipment grants and fellowships.

“Through funding basic chemical research, we are actively investing in the future of humankind,” Adam Kuspa, president of The Welch Foundation, said the news release. “We are proud to support so many talented researchers across Texas and continue to be inspired by the important work they complete every day.”

New Houston biotech co. developing capsules for hard-to-treat tumors

biotech breakthroughs

Houston company Sentinel BioTherapeutics has made promising headway in cancer immunotherapy for patients who don’t respond positively to more traditional treatments. New biotech venture creation studio RBL LLC (pronounced “rebel”) recently debuted the company at the 2025 American Society of Clinical Oncology (ASCO) Annual Meeting in Chicago.

Rima Chakrabarti is a neurologist by training. Though she says she’s “passionate about treating the brain,” her greatest fervor currently lies in leading Sentinel as its CEO. Sentinel is RBL’s first clinical venture, and Chakrabarti also serves as cofounder and managing partner of the venture studio.

The team sees an opportunity to use cytokine interleukin-2 (IL-2) capsules to fight many solid tumors for which immunotherapy hasn't been effective in the past. “We plan to develop a pipeline of drugs that way,” Chakrabarti says.

This may all sound brand-new, but Sentinel’s research goes back years to the work of Omid Veiseh, director of the Rice Biotechnology Launch Pad (RBLP). Through another, now-defunct company called Avenge Bio, Veiseh and Paul Wotton — also with RBLP and now RBL’s CEO and chairman of Sentinel — invested close to $45 million in capital toward their promising discovery.

From preclinical data on studies in mice, Avenge was able to manufacture its platform focused on ovarian cancer treatments and test it on 14 human patients. “That's essentially opened the door to understanding the clinical efficacy of this drug as well as it's brought this to the attention of the FDA, such that now we're able to continue that conversation,” says Chakrabarti. She emphasizes the point that Avenge’s demise was not due to the science, but to the company's unsuccessful outsourcing to a Massachusetts management team.

“They hadn't analyzed a lot of the data that we got access to upon the acquisition,” explains Chakrabarti. “When we analyzed the data, we saw this dose-dependent immune activation, very specific upregulation of checkpoints on T cells. We came to understand how effective this agent could be as an immune priming agent in a way that Avenge Bio hadn't been developing this drug.”

Chakrabarti says that Sentinel’s phase II trials are coming soon. They’ll continue their previous work with ovarian cancer, but Chakrabarti says that she also believes that the IL-2 capsules will be effective in the treatment of endometrial cancer. There’s also potential for people with other cancers located in the peritoneal cavity, such as colorectal cancer, gastrointestinal cancer and even primary peritoneal carcinomatosis.

“We're delivering these capsules into the peritoneal cavity and seeing both the safety as well as the immune activation,” Chakrabarti says. “We're seeing that up-regulation of the checkpoint that I mentioned. We're seeing a strong safety signal. This drug was very well-tolerated by patients where IL-2 has always had a challenge in being a well-tolerated drug.”

When phase II will take place is up to the success of Sentinel’s fundraising push. What we do know is that it will be led by Amir Jazaeri at MD Anderson Cancer Center. Part of the goal this summer is also to create an automated cell manufacturing process and prove that Sentinel can store its product long-term.

“This isn’t just another cell therapy,” Chakrabarti says.

"Sentinel's cytokine factory platform is the breakthrough technology that we believe has the potential to define the next era of cancer treatment," adds Wotton.

How Houston's innovation sector fared in 2025 Texas legislative session

That's a Wrap

The Greater Houston Partnership is touting a number of victories during the recently concluded Texas legislative session that will or could benefit the Houston area. They range from billions of dollars for dementia research to millions of dollars for energy projects.

“These wins were only possible through deep collaboration, among our coalition partners, elected officials, business and community leaders, and the engaged members of the Partnership,” according to a partnership blog post. “Together, we’ve demonstrated how a united voice for Houston helps drive results that benefit all Texans.”

In terms of business innovation, legislators carved out $715 million for nuclear, semiconductor, and other economic development projects, and a potential $1 billion pool of tax incentives through 2029 to support research-and-development projects. The partnership said these investments “position Houston and Texas for long-term growth.”

Dementia institute

One of the biggest legislative wins cited by the Greater Houston Partnership was passage of legislation sponsored by Sen. Joan Huffman, a Houston Republican, to provide $3 billion in funding over 10 years for the Dementia Prevention and Research Institute of Texas. Voters will be asked in November to vote on a ballot initiative that would set aside $3 billion for the new institute.

The dementia institute would be structured much like the Cancer Prevention and Research Institute of Texas (CPRIT), a state agency that provides funding for cancer research in the Lone Star State. Since its founding in 2008, CPRIT has awarded nearly $3.9 billion in research grants.

“By establishing the Dementia Prevention and Research Institute of Texas, we are positioning our state to lead the charge against one of the most devastating health challenges of our time,” Huffman said. “With $3 billion in funding over the next decade, we will drive critical research, develop new strategies for prevention and treatment, and support our healthcare community. Now, it’s up to voters to ensure this initiative moves forward.”

More than 500,000 Texans suffer from some form of dementia, including Alzheimer’s disease, according to Lt. Gov. Dan Patrick.

“With a steadfast commitment, Texas has the potential to become a world leader in combating [dementia] through the search for effective treatments and, ultimately, a cure,” Patrick said.

Funding for education

In the K-12 sector, lawmakers earmarked an extra $195 million for Houston ISD, $126.7 million for Cypress-Fairbanks ISD, $103.1 million for Katy ISD, $80.6 million for Fort Bend ISD, and $61 million for Aldine ISD, the partnership said.

In higher education, legislators allocated:

     
  • $1.17 billion for the University of Houston College of Medicine, University of Texas Health Science Center at Houston, UT MD Anderson Cancer Center, and Baylor College of Medicine
  • $922 million for the University of Houston System
  • $167 million for Texas Southern University
  • $10 million for the Center for Biotechnology at San Jacinto College.

Infrastructure

In the infrastructure arena, state lawmakers:

     
  • Approved $265 million for Houston-area water and flood mitigation projects, including $100 million for the Lynchburg Pump Station
  • Created the Lake Houston Dredging and Maintenance District
  • Established a fund for the Gulf Coast Protection District to supply $550 million for projects to make the coastline and ship channel more resilient

"Nuclear power renaissance"

House Bill 14 (HB 14) aims to lead a “nuclear power renaissance in the United States,” according to Texas Gov. Greg Abbott’s office. HB 14 establishes the Texas Advanced Nuclear Energy Office, and allocates $350 million for nuclear development and deployment. Two nuclear power plants currently operate in Texas, generating 10 percent of the energy that feeds the Electric Reliability Council Texas (ERCOT) power grid.

“This initiative will also strengthen Texas’ nuclear manufacturing capacity, rebuild a domestic fuel cycle supply chain, and train the future nuclear workforce,” Abbott said in a news release earlier this year.

One of the beneficiaries of Texas’ nuclear push could be Washington, D.C.-based Last Energy, which plans to build 30 micro-nuclear reactors near Abilene to serve power-gobbling data centers across the state. Houston-based Pelican Energy Partners also might be able to take advantage of the legislation after raising a $450 million fund to invest in companies that supply nuclear energy services and equipment.

Reed Clay, president of the Texas Nuclear Alliance, called this legislation “the most important nuclear development program of any state.”

“It is a giant leap forward for Texas and the United States, whose nuclear program was all but dead for decades,” said Clay. “With the passage of HB 14 and associated legislation, Texas is now positioned to lead a nuclear renaissance that is rightly seen as imperative for the energy security and national security of the United States.”

---

A version of this article first appeared on EnergyCapitalHTX.com.