COVID-19 antibody research coming out of the University of Texas stars an unlikely participant: A llama named Winter. University of Texas at Austin/Facebook

In the race to find a treatment for the novel coronavirus, researchers at the University of Texas at Austin have announced a potential breakthrough — thanks to a llama.

Scientists from Texas' flagship university who have been collaborating with the National Institutes of Health and Ghent University in Belgium identified an antibody treatment that could potentially neutralize the virus that causes COVID-19.

The researchers detail their work in the May 5 edition of Cell, a scientific journal.

"This is one of the first antibodies known to neutralize SARS-CoV-2," said Jason McLellan, associate professor of molecular biosciences at UT Austin and co-senior author of the paper, in a release. (FYI, SARS-CoV-2 is referring to the virus that causes COVID-19.)

Using a Belgian llama named Winter, scientists were able to identify two antibodies the animal produces when it comes into contact with a foreign body (such as the coronavirus). The first is similar to a human antibody and the second is much smaller, about one-quarter of the size of the other.

This is Winter. Photo courtesy of University of Texas at Austin

Researchers were able to link two copies of this special llama antibody to create a new antibody. This new antibody binds tightly to a key protein on the coronavirus germ that causes COVID-19 and could possible be nebulized and put into an inhaler.

"That makes them potentially really interesting as a drug for a respiratory pathogen because you're delivering it right to the site of infection," said Daniel Wrapp, a UT graduate student in McLellan's lab and co-first author of the paper.

Unlike vaccines, which can take up to two months to take effect, antibody treatment can be used in more vulnerable populations as a way to fight off the virus.

"Vaccines have to be given a month or two before infection to provide protection," McLellan said. "With antibody therapies, you're directly giving somebody the protective antibodies and so, immediately after treatment, they should be protected. The antibodies could also be used to treat somebody who is already sick to lessen the severity of the disease."

From here, research turns to preclinical studies, using hamsters and primates for testing. If successful, they will move onto humans.

If you're wondering just how a group of researchers living in different parts of the globe were able to make this discovery seemingly overnight, that's because they've actually been working on it since 2016, when Winter was just 9 months old.

The experiment began as a way to develop vaccinations for two earlier versions of the coronavirus: SARS-CoV-1 and MERS-CoV. Their years of research allowed the scientists to pivot in recent months to isolating the protein in COVID-19.

As for Winter, she's now 4 years old and still lives with about 130 llamas on a farm in Belgium, likely unaware of her contribution to potentially altering the course of COVID-19 forever.

------

This article originally ran on CultureMap.

Coding camps continue to grow and expand in Houston. The most recent comes from the University of Texas. Getty Images

UT coding camp emerges in Houston as the city grows its tech and innovation ecosystem

Up to code

As Houston's innovation ecosystem grows, the need for tech talent grows too. It's why the University of Texas and workforce accelerator Trilogy Education decided to bring a series of coding boot camps designed to teach Houstonians the skills they need to excel in the fast-paced world of the tech economy to town.

"Too many working adults lack the skills to succeed in the digital economy," says Liliya Spinazzola, the senior director for professional education and strategic initiatives at the Texas Extended Campus of The University of Texas at Austin. "And that means that employers are lacking a talent pool."

The Houston Coding Boot Camp aims to change all that. The 24-week sessions teach web development and coding skills, allowing adults to take classes even as they're working. That kind of flexibility helps them increase their knowledge as they continue to build career paths.

Houston's seen a good amount of growth when it comes to new coding camps. Digital Crafts, for instance, grew from an inaugural class of eight students to 125 people in just two years. Women Who Code saw a need for female coders in Houston to have a network, and now the city has a newly launched chapter.

Student success
So far, 260 students have completed the programs, going on to work at companies such as JP Morgan, IBM, and Deloitte.

One of those is Rebecca Gemeinhardt, now a full stack developer at Shell. She graduated with her bachelor's in graphic arts from the Kansas City Art Institute in 2017, and found that she missed being in a classroom. When she started the boot camp, she was immediately drawn to the challenge the subject matter offered, as well as the flexible schedule.

"The boot camp was just as formidable as the curriculum promised but extremely fulfilling," she says. "Going into boot camp, I didn't tell anyone I was doing it — what if I struggled and couldn't get through it? I kept it a secret until I found the confidence to identify as a developer."

Once she completed the program, she was hired at Shell.

"My life had changed so much in just six months but definitely for the better," Gemeinhardt says. "By focusing on the ability to adopt new technologies, [the coding boot camp instructors] left us with the invaluable skill of being adaptable and fast-learning full stack developers. This has helped me immensely at my current position as we are always incorporating new languages to our architecture depending on individual project needs."

Filling the need
Spinazzola says the camps deliberately try to create environments that foster the level of problem solving and exploration Gemeinhardt describes. The program partners with employers to discover what skills are most needed, and tailors the curriculum to dovetail with them. She says the skills most in demand right now are coding, cyber security, IT project management, and digital marketing.

"We also look at job description data here in Texas to see what skills are listed," she says. "And while students are in the program, we have a robust network that engages with them upfront, talking to them about what jobs are out there. And we host career fairs where they can show off their portfolios and discuss their skills set with potential employers."

Spinazzola says that students come from all walks of life and employment backgrounds, and that 26 percent of the participants are women. With 25 students per boot camp session, the small classes make for deep instruction. UT offers between three and fours sessions in Houston each year. She says that she finds participants are looking to either break into the tech sector, learn new skills or re-train to be able to advance their careers. The average age of students is somewhere in the low-30s, she says.

"We had a student who owned a cooking school and wanted to start a new career," she says. "[Rebecca] trained as a graphic artist and wanted to be a developer. One student shut down his medical practice and says that he wanted to learn coding so that he could go work for a pharmaceutical company. To me, that's the beauty of this program. These skills are in demand, and our students are able to take what they already know and enhance their abilities to be able to take on new career paths."

The University of Texas System scooted up three spots from 2017. University of Texas at Austin/Facebook

University of Texas ranks as one of the world's most innovative schools

Hook 'em

A new ranking from Reuters has placed the University of Texas System among the world's most innovative universities.

According to an October 11 release, the Reuters Top 100: The World's Most Innovative Universities "identifies and ranks the educational institutions doing the most to advance science, invent new technologies and power new markets and industries." The UT System ranked No. 6 out of the 100 best in the world. The 2018 ranking is a jump up from its No. 9 spot in 2017.

In addition to the flagship University of Texas at Austin, the system is comprised of seven other public universities across the state as well as six health institutions. Reuters notes that because of how the UT System reports on innovation, it assessed the entire enterprise rather than individual universities.

As a whole, the UT System boasts an impressive number of accolades that helped it scoot up three spots. As Reuters notes, chief among these accolades is the National Science Foundation's $60 million grant to the Texas Advanced Computing Center at the University of Texas at Austin to build a supercomputer and the system's $2.7 billion in annual research expenditures. (Not to mention numerous Nobel Laureates among both faculty and alumni.)

Overall, the U.S. dominated the list, claiming 46 out of the 100 spots. Rounding out the top 10 for 2018 is: No. 1, Stanford University; No. 2, Massachusetts Institute of Technology; No. 3, Harvard University; No. 4, University of Pennsylvania; No. 5, University of Washington; No. 7, Belgium's KU Leuven, No. 8, U.K.'s Imperial College London; No. 9, University of North Carolina at Chapel Hill; and No. 10, Vanderbilt University.

---

This story originally appeared on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New Rice Brain Institute partners with TMC to award inaugural grants

brain trust

The recently founded Rice Brain Institute has named the first four projects to receive research awards through the Rice and TMC Neuro Collaboration Seed Grant Program.

The new grant program brings together Rice faculty with clinicians and scientists at The University of Texas Medical Branch, Baylor College of Medicine, UTHealth Houston and The University of Texas MD Anderson Cancer Center. The program will support pilot projects that address neurological disease, mental health and brain injury.

The first round of awards was selected from a competitive pool of 40 proposals, and will support projects that reflect Rice Brain Institute’s research agenda.

“These awards are meant to help teams test bold ideas and build the collaborations needed to sustain long-term research programs in brain health,” Behnaam Aazhang, Rice Brain Institute director and co-director of the Rice Neuroengineering Initiative, said in a news release.

The seed funding has been awarded to the following principal investigators:

  • Kevin McHugh, associate professor of bioengineering and chemistry at Rice, and Peter Kan, professor and chair of neurosurgery at the UTMB. McHugh and Kan are developing an injectable material designed to seal off fragile, abnormal blood vessels that can cause life-threatening bleeding in the brain.
  • Jerzy Szablowski, assistant professor of bioengineering at Rice, and Jochen Meyer, assistant professor of neurology at Baylor. Szablowski and Meyer are leading a nonsurgical, ultrasound approach to deliver gene-based therapies to deep brain regions involved in seizures to control epilepsy without implanted electrodes or invasive procedures.
  • Juliane Sempionatto, assistant professor of electrical and computer engineering at Rice, and Aaron Gusdon, associate professor of neurosurgery at UTHealth Houston. Sempionatto and Gusdon are leading efforts to create a blood test that can identify patients at high risk for delayed brain injury following aneurysm-related hemorrhage, which could lead to earlier intervention and improved outcomes.
  • Christina Tringides, assistant professor of materials science and nanoengineering at Rice, and Sujit Prabhu, professor of neurosurgery at MD Anderson, who are working to reduce the risk of long-term speech and language impairment during brain tumor removal by combining advanced brain recordings, imaging and noninvasive stimulation.

The grants were facilitated by Rice’s Educational and Research Initiatives for Collaborative Health (ENRICH) Office. Rice says that the unique split-funding model of these grants could help structure future collaborations between the university and the TMC.

The Rice Brain Institute launched this fall and aims to use engineering, natural sciences and social sciences to research the brain and reduce the burden of neurodegenerative, neurodevelopmental and mental health disorders. Last month, the university's Shepherd School of Music also launched the Music, Mind and Body Lab, an interdisciplinary hub that brings artists and scientists together to study the "intersection of the arts, neuroscience and the medical humanities." Read more here.

Your data center is either closer than you think or much farther away

houston voices

A new study shows why some facilities cluster in cities for speed and access, while others move to rural regions in search of scale and lower costs. Based on research by Tommy Pan Fang (Rice Business) and Shane Greenstein (Harvard).

Key findings:

  • Third-party colocation centers are physical facilities in close proximity to firms that use them, while cloud providers operate large data centers from a distance and sell access to virtualized computing resources as on‑demand services over the internet.
  • Hospitals and financial firms often require urban third-party centers for low latency and regulatory compliance, while batch processing and many AI workloads can operate more efficiently from lower-cost cloud hubs.
  • For policymakers trying to attract data centers, access to reliable power, water and high-capacity internet matter more than tax incentives.

Recent outages and the surge in AI-driven computing have made data center siting decisions more consequential than ever, especially as energy and water constraints tighten. Communities invest public dollars on the promise of jobs and growth, while firms weigh long-term commitments to land, power and connectivity.

Against that backdrop, a critical question comes into focus: Where do data centers get built — and what actually drives those decisions?

A new study by Tommy Pan Fang (Rice Business) and Shane Greenstein (Harvard Business School) provides the first large-scale statistical analysis of data center location strategies across the United States. It offers policymakers and firms a clearer starting point for understanding how different types of data centers respond to economic and strategic incentives.

Forthcoming in the journal Strategy Science, the study examines two major types of infrastructure: third-party colocation centers that lease server space to multiple firms, and hyperscale cloud centers owned by providers like Amazon, Google and Microsoft.

Two Models, Two Location Strategies

The study draws on pre-pandemic data from 2018 and 2019, a period of relative geographic stability in supply and demand. This window gives researchers a clean baseline before remote work, AI demand and new infrastructure pressures began reshaping internet traffic patterns.

The findings show that data centers follow a bifurcated geography. Third-party centers cluster in dense urban markets, where buyers prioritize proximity to customers despite higher land and operating costs. Cloud providers, by contrast, concentrate massive sites in a small number of lower-density regions, where electricity, land and construction are cheaper and economies of scale are easier to achieve.

Third-party data centers, in other words, follow demand. They locate in urban markets where firms in finance, healthcare and IT value low latency, secure storage, and compliance with regulatory standards.

Using county-level data, the researchers modeled how population density, industry mix and operating costs predict where new centers enter. Every U.S. metro with more than 700,000 residents had at least one third-party provider, while many mid-sized cities had none.

ImageThis pattern challenges common assumptions. Third-party facilities are more distributed across urban America than prevailing narratives suggest.

Customer proximity matters because some sectors cannot absorb delay. In critical operations, even slight pauses can have real consequences. For hospital systems, lag can affect performance and risk exposure. And in high-frequency trading, milliseconds can determine whether value is captured or lost in a transaction.

“For industries where speed is everything, being too far from the physical infrastructure can meaningfully affect performance and risk,” Pan Fang says. “Proximity isn’t optional for sectors that can’t absorb delay.”

The Economics of Distance

For cloud providers, the picture looks very different. Their decisions follow a logic shaped primarily by cost and scale. Because cloud services can be delivered from afar, firms tend to build enormous sites in low-density regions where power is cheap and land is abundant.

These facilities can draw hundreds of megawatts of electricity and operate with far fewer employees than urban centers. “The cloud can serve almost anywhere,” Pan Fang says, “so location is a question of cost before geography.”

The study finds that cloud infrastructure clusters around network backbones and energy economics, not talent pools. Well-known hubs like Ashburn, Virginia — often called “Data Center Alley” — reflect this logic, having benefited from early network infrastructure that made them natural convergence points for digital traffic.

Local governments often try to lure data centers with tax incentives, betting they will create high-tech jobs. But the study suggests other factors matter more to cloud providers, including construction costs, network connectivity and access to reliable, affordable electricity.

When cloud centers need a local presence, distance can sometimes become a constraint. Providers often address this by working alongside third-party operators. “Third-party centers can complement cloud firms when they need a foothold closer to customers,” Pan Fang says.

That hybrid pattern — massive regional hubs complementing strategic colocation — may define the next phase of data center growth.

Looking ahead, shifts in remote work, climate resilience, energy prices and AI-driven computing may reshape where new facilities go. Some workloads may move closer to users, while others may consolidate into large rural hubs. Emerging data-sovereignty rules could also redirect investment beyond the United States.

“The cloud feels weightless,” Pan Fang says, “but it rests on real choices about land, power and proximity.”

---

This article originally appeared on Rice Business Wisdom. Written by Scott Pett.

Pan Fang and Greenstein (2025). “Where the Cloud Rests: The Economic Geography of Data Centers,” forthcoming in Strategy Science.

Houston climbs to top 10 spot on North American tech hubs index

tech report

Houston already is the Energy Capital of the World, and now it’s gaining ground as a tech hub.

On Site Selection magazine’s 2026 North American Tech Hub Index, Houston jumped to No. 10 from No. 16 last year. The index relies on data from Site Selection as well as data from CBRE, CompTIA and TeleGeography to rank the continent’s tech hotspots. The index incorporates factors such as internet connectivity, tech talent and facility projects for tech companies.

In 2023, the Greater Houston Partnership noted the region had “begun to receive its due as a prominent emerging tech hub, joining the likes of San Francisco and Austin as a major player in the sector, and as a center of activity for the next generation of innovators and entrepreneurs.”

The Houston-area tech sector employs more than 230,000 people, according to the partnership, and generates an economic impact of $21.2 billion.

Elsewhere in Texas, two other metros fared well on the Site Selection index:

  • Dallas-Fort Worth nabbed the No. 1 spot, up from No. 2 last year.
  • Austin rose from No. 8 last year to No. 7 this year.

San Antonio slid from No. 18 in 2025 to No. 22 in 2026, however.

Two economic development officials in DFW chimed in about the region’s No. 1 ranking on the index:

  • “This ranking affirms what we’ve long seen on the ground — Dallas-Fort Worth is a top-tier technology and innovation center,” said Duane Dankesreiter, senior vice president of research and innovation at the Dallas Regional Chamber. “Our region’s scale, talent base, and diverse strengths … continue to set DFW apart as a national leader.”
  • “Being recognized as the top North American tech hub underscores the strength of the entire Dallas-Fort Worth region as a center of innovation and next-generation technology,” said Robert Allen, president and CEO of the Fort Worth Economic Development Partnership.

While not directly addressing Austin’s Site Selection ranking, Thom Singer, CEO of the Austin Technology Council, recently pondered whether Silicon Hills will grow “into the kind of community that other cities study for the right reasons.”

“Austin tech is not a club. It is not a scene. It is not a hashtag, a happy hour, or any one place or person,” Singer wrote on the council’s blog. “Austin tech is an economic engine and a global brand, built by thousands of people who decided to take a risk, build something, hire others, and be part of a community that is still young enough to reinvent itself.”

South of Austin, Port San Antonio is driving much of that region’s tech activity. Occupied by more than 80 employers, the 1,900-acre tech and innovation campus was home to 18,400 workers in 2024 and created a local economic impact of $7.9 billion, according to a study by Zenith Economics.

“Port San Antonio is a prime example of how innovation and infrastructure come together to strengthen [Texas’] economy, support thousands of good jobs, and keep Texas competitive on the global stage,” said Kelly Hancock, the acting state comptroller.