The Carbon to Value Initiative kicked off last week at Greentown Houston. Photo via GreentownLabs.com

A carbon innovation initiative in collaboration with Greentown Houston has named its new cohort.

The Carbon to Value Initiative (C2V Initiative) — a collaboration between NYU Tandon School of Engineering's Urban Future Lab (UFL), Greentown Labs, and Fraunhofer USA — has named nine startup participants for the fourth year of its carbontech accelerator program.

"Once again, the C2V Initiative has been able to select some of the most promising carbontech startups through a very competitive process with a 7 percent acceptance rate," Frederic Clerc, director of the C2V Initiative and interim managing director of UFL, says in a news release. "The diversity of this cohort, in its technologies, products, geographies, and stages, makes it an amazing snapshot of the rapidly evolving carbontech innovation landscape."

The cohort was selected from over a hundred applications from nearly 30 countries. In the six-month program, the nine companies gain access to the C2V Initiative's Carbontech Leadership Council, an invitation-only group of corporate, nonprofit, and government leaders who provide commercialization opportunities and identify avenues for technology validation, testing, and demonstration.

The year four cohort, according to the release, includes:

  • Ardent, from New Castle, Delaware, is a process technology company that is developing membrane-based solutions for point-source carbon capture and other chemical separations.
  • CarbonBlue, from Haifa, Israel, develops a chemical process that mineralizes and extracts CO2 from water, which then reabsorbs more atmospheric CO2.
  • MacroCycle, from Somerville, Massachusetts, develops a chemical recycling process to turn polyethylene terephthalate (PET) and polyester-fiber waste into "virgin-grade" plastics.
  • Maple Materials, from Richmond, California, develops an electrolysis process to convert CO2 into graphite and oxygen.
  • Oxylus Energy, from New Haven, Connecticut, develops a direct electrochemical process to convert CO2 into fuels and chemical feedstocks, such as methanol.
  • Phlair, from Munich, Germany, develops a renewable-energy-powered Direct Air Capture (DAC) system using an electrochemical process for acid and base generation.
  • Secant Fuel, from Montreal, Quebec, Canada, develops a one-step electrocatalytic process that converts flue gas into syngas.
  • RenewCO2, from Somerset, New Jersey, is developing an electrochemical process to convert CO2 into fuels and chemicals, such as sustainable aviation fuel (SAF) or propylene glycol.
  • Seabound, from London, England, builds carbon-capture equipment for new and existing ships.

"The depth and breadth of carbontech innovations represented in this applicant pool speaks volumes to this growing and dynamic industry around the world," adds Kevin Dutt, Interim CEO of Greentown Labs. "We're eager to support these nine impressive companies as they progress through this program and look forward to seeing how they engage with the CLC now and into the future."

The C2V Initiative kicked off at a public event on Sept. 19 at Greentown Houston and via livestream.

------

This article originally ran on EnergyCapital.

A new six-month accelerator program is looking to move the needle on the energy transition. Photo via greentownlabs.com

Houston organizations team up to accelerate startups with low-carbon solutions

greentown hou

Attention, innovators: A new initiative in Houston is searching for startups whose offerings can help reduce global carbon emissions.

The Low-Carbon Hydrogen Accelerator is a partnership involving Greentown Labs, the Electric Power Research Institute, Shell Oil, the City of Houston, and New York University's Urban Future Lab. The accelerator is seeking applications from startups that are advancing low-carbon hydrogen production, enhancing hydrogen storage and distribution, or providing business models for management of hydrogen supply chains. Applications are due February 9, 2022.

"If we can improve the devices and processes that will be used to make, transport, and store clean hydrogen in the future, it can become a cost-competitive fuel. At the same time, these advances can improve the capacity factor of renewable generation, producing multiple economic and climate benefits," Pat Sapinsley, managing director of cleantech initiatives at the Urban Future Lab, says in a news release.

The six-month accelerator will enable startups to collaborate with the Electric Power Research Institute, utilities, and Shell on tech development, feasibility studies, pilot projects, and other low-carbon efforts.

The institute and Shell will provide startups two routes within the accelerate: a path for validation of their technology and a path for demonstration of their technology.

"Accelerating low-carbon hydrogen technologies is essential to achieving global net-zero targets by 2050," says Neva Espinoza, the institute's vice president of energy supply and low-carbon resources.

Shell foresees hydrogen playing a bigger role in hard-to-decarbonize sectors such as heavy-duty trucking, marine, aviation, chemicals, steel, and cement. Julie Ferland, vice president of innovation excellence at Houston-based Shell Oil, says programs such as the new accelerator will be critical to fostering low-carbon energy.

Earlier this year, after visiting Greentown Labs' Houston location, U.S. Energy Secretary Jennifer Granholm and the U.S. Department of Energy launched the Hydrogen Energy Earthshot to reduce the cost of clean hydrogen by 80 percent to $1 per kilogram by 2030.

"As the Energy Capital of the World, I believe it is our responsibility to continue Houston's legacy of energy innovation and develop the technologies and practices needed to decarbonize the global energy sector," Houston Mayor Sylvester Turner says. "Houston has the skilled workforce and infrastructure to develop clean hydrogen at scale, and Greentown Labs' Low-Carbon Hydrogen Accelerator is a great example of the kind of partnerships we need to make it happen."

Greentown Labs is the largest climatech startup incubator in North America. The Somerville, Massachusetts-based incubator recently opened its Houston location.

Houston-based Cemvita Factory, which biomimics photosynthesis to turn carbon emissions into feedstock, has been selected for a new international accelerator. Photo courtesy of Cemvita Factory

Houston startup selected for international carbontech accelerator

the future of climatech

A new international accelerator focused on the commercialization of carbontech has announced its new cohort — and one Houston-based company has made the cut.

Cemvita Factory has been accepted into the Carbon to Value Initiative, a recently launched accelerator supported by The Urban Future Lab at the NYU Tandon School of Engineering, Greentown Labs, and Fraunhofer USA. The program is focused on supporting companies with technologies that capture, convert, and store carbon dioxide (CO₂) into valuable end products or services, according to a news release.

"In addition to being absolutely necessary to stave off dangerous climate impacts, carbontech innovations represent a potential $3 trillion market opportunity," says Pat Sapinsley, managing director at the Urban Future Lab, in the news release. "We are excited to welcome 10 startups, each proposing different business models and technology innovations to realize that opportunity."

Cemvita Factory, which was founded by siblings Tara and Moji Karimi in 2017, has created a way to biomimic photosynthesis to take CO2 and turn it into something usable for its energy clients, like feedstocks. Cemvita has 30 different molecules its technology can produce and works with the likes of BHP, Oxy, and more.

"We are excited to represent Houston in the first cohort for the Carbon to Value Initiative," Moji Karimi tells InnovationMap. "We want to send a message that Houston is not just the Oil and Gas capital of the world, but also the center of gravity for a sustainable Energy Transition."The C2V Initiative selected 10 startups out of over 130 applications from 26 countries. The cohort has technologies ranging from carbon utilization product and process innovations to carbon capture and carbon sequestration solutions.

Cemvita isn't alone in repping the Lone Star State. San Antonio-based CarbonFree, which has commercial technologies that capture and convert industrial CO2 emissions into minerals for sale or storage, also made the cohort.

The other eight non-Texas companies are:

  • Air Company, based in New York City, transforms CO2 into high-purity alcohols that can be used in spirits, sanitizers, and a variety of consumer industries.
  • Reykjavík, Iceland-based Carbfix provides a natural and permanent carbon storage solution by turning CO2 into stone underground.
  • CarbonQuest, based in New York City, provides decarbonization technologies and solutions for buildings with a focus on modular carbon capture.
  • Toronto, Canada-based CERT converts CO2 to chemicals such as ethylene via electrolysis.
  • Made of Air, based in Berlin, Germany creates drop-in ready, durable thermoplastics using carbon captured by biomass.
  • Oakland, California-based Mars Materials develops a new pathway for carbon fiber production using CO2 as a raw material.
  • San Francisco-based Patch is a platform for negative emissions.
  • Planetary Hydrogen, based in Dartmouth, Canada, combines hydrogen production with CO2 sequestration via ocean air capture.

The program kicks off at a virtual event on May 6 from 3-5 p.m. The six-month program will provide its cohort with a customized curriculum, hands-on mentorship, and knowledge-sharing sessions with C2V Initiative's Carbontech Leadership Council — an invitation-only group of international corporate, academic, and government thought leaders.

The cohort will also receive complimentary membership and access to the Greentown Labs community, which includes is recently opened facility in Houston.

"We know that to effectively address the climate crisis and mitigate the effects of climate change, we need to rapidly scale and deploy carbontech solutions to accelerate the energy transition," says Emily Reichert, CEO of Greentown Labs. "We're proud to support these startups from all over the world and look forward to the collaborations that will spark among the startups and our CLC members."

Listen to Cemvita Factory's episode of the Houston Innovators Podcast below.


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University lands $18M to revolutionize lymphatic disease detection

fresh funding

An arm of the U.S. Department of Health and Human Services has awarded $18 million to scientists at Rice University for research that has the potential to revolutionize how lymphatic diseases are detected and help increase survivability.

The lymphatic system is the network of vessels all over the body that help eliminate waste, absorb fat and maintain fluid balance. Diseases in this system are often difficult to detect early due to the small size of the vessels and the invasiveness of biopsy testing. Though survival rates of lymph disease have skyrocketed in the United States over the last five years, it still claims around 200,000 people in the country annually.

Early detection of complex lymphatic anomalies (CLAs) and lymphedema is essential in increasing successful treatment rates. That’s where Rice University’s SynthX Center, directed by Han Xiao and Lei Li, an assistant professor of electrical and computer engineering, comes in.

Aided by researchers from Texas Children’s Hospital, Baylor College of Medicine, the University of Texas at Dallas and the University of Texas Southwestern Medical Center, the center is pioneering two technologies: the Visual Imaging System for Tracing and Analyzing Lymphatics with Photoacoustics (VISTA-LYMPH) and Digital Plasmonic Nanobubble Detection for Protein (DIAMOND-P).

Simply put, VISTA-LYMPH uses photoacoustic tomography (PAT), a combination of light and sound, to more accurately map the tiny vessels of the lymphatic system. The process is more effective than diagnostic tools that use only light or sound, independent of one another. The research award is through the Advanced Research Projects Agency for Health (ARPA-H) Lymphatic Imaging, Genomics and pHenotyping Technologies (LIGHT) program, part of the U.S. HHS, which saw the potential of VISTA-LYMPH in animal tests that produced finely detailed diagnostic maps.

“Thanks to ARPA-H’s award, we will build the most advanced PAT system to image the body’s lymphatic network with unprecedented resolution and speed, enabling earlier and more accurate diagnosis,” Li said in a news release.

Meanwhile, DIAMOND-P could replace the older, less exact immunoassay. It uses laser-heated vapors of plasmonic nanoparticles to detect viruses without having to separate or amplify, and at room temperature, greatly simplifying the process. This is an important part of greater diagnosis because even with VISTA-LYMPH’s greater imaging accuracy, many lymphatic diseases still do not appear. Detecting biological markers is still necessary.

According to Rice, the efforts will help address lymphatic disorders, including Gorham-Stout disease, kaposiform lymphangiomatosis and generalized lymphatic anomaly. They also could help manage conditions associated with lymphatic dysfunction, including cancer metastasis, cardiovascular disease and neurodegeneration.

“By validating VISTA-LYMPH and DIAMOND-P in both preclinical and clinical settings, the team aims to establish a comprehensive diagnostic pipeline for lymphatic diseases and potentially beyond,” Xiao added in the release.

The ARPA-H award funds the project for up to five years.

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.