The Carbon to Value Initiative kicked off last week at Greentown Houston. Photo via GreentownLabs.com

A carbon innovation initiative in collaboration with Greentown Houston has named its new cohort.

The Carbon to Value Initiative (C2V Initiative) — a collaboration between NYU Tandon School of Engineering's Urban Future Lab (UFL), Greentown Labs, and Fraunhofer USA — has named nine startup participants for the fourth year of its carbontech accelerator program.

"Once again, the C2V Initiative has been able to select some of the most promising carbontech startups through a very competitive process with a 7 percent acceptance rate," Frederic Clerc, director of the C2V Initiative and interim managing director of UFL, says in a news release. "The diversity of this cohort, in its technologies, products, geographies, and stages, makes it an amazing snapshot of the rapidly evolving carbontech innovation landscape."

The cohort was selected from over a hundred applications from nearly 30 countries. In the six-month program, the nine companies gain access to the C2V Initiative's Carbontech Leadership Council, an invitation-only group of corporate, nonprofit, and government leaders who provide commercialization opportunities and identify avenues for technology validation, testing, and demonstration.

The year four cohort, according to the release, includes:

  • Ardent, from New Castle, Delaware, is a process technology company that is developing membrane-based solutions for point-source carbon capture and other chemical separations.
  • CarbonBlue, from Haifa, Israel, develops a chemical process that mineralizes and extracts CO2 from water, which then reabsorbs more atmospheric CO2.
  • MacroCycle, from Somerville, Massachusetts, develops a chemical recycling process to turn polyethylene terephthalate (PET) and polyester-fiber waste into "virgin-grade" plastics.
  • Maple Materials, from Richmond, California,develops an electrolysis process to convert CO2 into graphite and oxygen.
  • Oxylus Energy, from New Haven, Connecticut, develops a direct electrochemical process to convert CO2 into fuels and chemical feedstocks, such as methanol.
  • Phlair, from Munich, Germany, develops a renewable-energy-powered Direct Air Capture (DAC) system using an electrochemical process for acid and base generation.
  • Secant Fuel, from Montreal, Quebec, Canada, develops a one-step electrocatalytic process that converts flue gas into syngas.
  • RenewCO2, from Somerset, New Jersey, is developing an electrochemical process to convert CO2 into fuels and chemicals, such as sustainable aviation fuel (SAF) or propylene glycol.
  • Seabound, from London, England, builds carbon-capture equipment for new and existing ships.

"The depth and breadth of carbontech innovations represented in this applicant pool speaks volumes to this growing and dynamic industry around the world," adds Kevin Dutt, Interim CEO of Greentown Labs. "We're eager to support these nine impressive companies as they progress through this program and look forward to seeing how they engage with the CLC now and into the future."

The C2V Initiative kicked off at a public event on Sept. 19 at Greentown Houston and via livestream.

------

This article originally ran on EnergyCapital.

A new six-month accelerator program is looking to move the needle on the energy transition. Photo via greentownlabs.com

Houston organizations team up to accelerate startups with low-carbon solutions

greentown hou

Attention, innovators: A new initiative in Houston is searching for startups whose offerings can help reduce global carbon emissions.

The Low-Carbon Hydrogen Accelerator is a partnership involving Greentown Labs, the Electric Power Research Institute, Shell Oil, the City of Houston, and New York University's Urban Future Lab. The accelerator is seeking applications from startups that are advancing low-carbon hydrogen production, enhancing hydrogen storage and distribution, or providing business models for management of hydrogen supply chains. Applications are due February 9, 2022.

"If we can improve the devices and processes that will be used to make, transport, and store clean hydrogen in the future, it can become a cost-competitive fuel. At the same time, these advances can improve the capacity factor of renewable generation, producing multiple economic and climate benefits," Pat Sapinsley, managing director of cleantech initiatives at the Urban Future Lab, says in a news release.

The six-month accelerator will enable startups to collaborate with the Electric Power Research Institute, utilities, and Shell on tech development, feasibility studies, pilot projects, and other low-carbon efforts.

The institute and Shell will provide startups two routes within the accelerate: a path for validation of their technology and a path for demonstration of their technology.

"Accelerating low-carbon hydrogen technologies is essential to achieving global net-zero targets by 2050," says Neva Espinoza, the institute's vice president of energy supply and low-carbon resources.

Shell foresees hydrogen playing a bigger role in hard-to-decarbonize sectors such as heavy-duty trucking, marine, aviation, chemicals, steel, and cement. Julie Ferland, vice president of innovation excellence at Houston-based Shell Oil, says programs such as the new accelerator will be critical to fostering low-carbon energy.

Earlier this year, after visiting Greentown Labs' Houston location, U.S. Energy Secretary Jennifer Granholm and the U.S. Department of Energy launched the Hydrogen Energy Earthshot to reduce the cost of clean hydrogen by 80 percent to $1 per kilogram by 2030.

"As the Energy Capital of the World, I believe it is our responsibility to continue Houston's legacy of energy innovation and develop the technologies and practices needed to decarbonize the global energy sector," Houston Mayor Sylvester Turner says. "Houston has the skilled workforce and infrastructure to develop clean hydrogen at scale, and Greentown Labs' Low-Carbon Hydrogen Accelerator is a great example of the kind of partnerships we need to make it happen."

Greentown Labs is the largest climatech startup incubator in North America. The Somerville, Massachusetts-based incubator recently opened its Houston location.

Houston-based Cemvita Factory, which biomimics photosynthesis to turn carbon emissions into feedstock, has been selected for a new international accelerator. Photo courtesy of Cemvita Factory

Houston startup selected for international carbontech accelerator

the future of climatech

A new international accelerator focused on the commercialization of carbontech has announced its new cohort — and one Houston-based company has made the cut.

Cemvita Factory has been accepted into the Carbon to Value Initiative, a recently launched accelerator supported by The Urban Future Lab at the NYU Tandon School of Engineering, Greentown Labs, and Fraunhofer USA. The program is focused on supporting companies with technologies that capture, convert, and store carbon dioxide (CO₂) into valuable end products or services, according to a news release.

"In addition to being absolutely necessary to stave off dangerous climate impacts, carbontech innovations represent a potential $3 trillion market opportunity," says Pat Sapinsley, managing director at the Urban Future Lab, in the news release. "We are excited to welcome 10 startups, each proposing different business models and technology innovations to realize that opportunity."

Cemvita Factory, which was founded by siblings Tara and Moji Karimi in 2017, has created a way to biomimic photosynthesis to take CO2 and turn it into something usable for its energy clients, like feedstocks. Cemvita has 30 different molecules its technology can produce and works with the likes of BHP, Oxy, and more.

"We are excited to represent Houston in the first cohort for the Carbon to Value Initiative," Moji Karimi tells InnovationMap. "We want to send a message that Houston is not just the Oil and Gas capital of the world, but also the center of gravity for a sustainable Energy Transition."The C2V Initiative selected 10 startups out of over 130 applications from 26 countries. The cohort has technologies ranging from carbon utilization product and process innovations to carbon capture and carbon sequestration solutions.

Cemvita isn't alone in repping the Lone Star State. San Antonio-based CarbonFree, which has commercial technologies that capture and convert industrial CO2 emissions into minerals for sale or storage, also made the cohort.

The other eight non-Texas companies are:

  • Air Company, based in New York City, transforms CO2 into high-purity alcohols that can be used in spirits, sanitizers, and a variety of consumer industries.
  • Reykjavík, Iceland-based Carbfix provides a natural and permanent carbon storage solution by turning CO2 into stone underground.
  • CarbonQuest, based in New York City, provides decarbonization technologies and solutions for buildings with a focus on modular carbon capture.
  • Toronto, Canada-based CERT converts CO2 to chemicals such as ethylene via electrolysis.
  • Made of Air, based in Berlin, Germany creates drop-in ready, durable thermoplastics using carbon captured by biomass.
  • Oakland, California-based Mars Materials develops a new pathway for carbon fiber production using CO2 as a raw material.
  • San Francisco-based Patch is a platform for negative emissions.
  • Planetary Hydrogen, based in Dartmouth, Canada, combines hydrogen production with CO2 sequestration via ocean air capture.

The program kicks off at a virtual event on May 6 from 3-5 p.m. The six-month program will provide its cohort with a customized curriculum, hands-on mentorship, and knowledge-sharing sessions with C2V Initiative's Carbontech Leadership Council— an invitation-only group of international corporate, academic, and government thought leaders.

The cohort will also receive complimentary membership and access to the Greentown Labs community, which includes is recently opened facility in Houston.

"We know that to effectively address the climate crisis and mitigate the effects of climate change, we need to rapidly scale and deploy carbontech solutions to accelerate the energy transition," says Emily Reichert, CEO of Greentown Labs. "We're proud to support these startups from all over the world and look forward to the collaborations that will spark among the startups and our CLC members."

Listen to Cemvita Factory's episode of the Houston Innovators Podcast below.


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston schools shine on annual ranking of top institutions for 2025

best in class

Several Houston elementary and middle schools are at the top of the class when it comes to educating and preparing the next generation for a successful life and career, according to U.S. News & World Report's just-released list of 2025 Elementary and Middle Schools Rankings.

One such school – T.H. Rogers School in Houston ISD – is the No. 8 best middle school in Texas for 2025.

U.S. News ranked over 79,000 public schools on the state and district level using data from the U.S. Department of Education. Schools were analyzed based on their students' proficiencies in mathematics and reading/language arts on state assessments, and tie-breakers were decided based on student-teacher ratios.

Texas' best middle schools for 2025

Three Houston middle schools achieved spots among the top 10 best Texas middle schools for 2025, according to U.S. News.

T.H. Rogers School has a total enrollment of 1,063 students, with 87 percent of the student population scoring "at or above the proficient level" in mathematics, and 90 percent proficiency in reading. The school has a student-teacher ratio of 17:1, with 62 full-time teachers.

T.H. Rogers School also topped the district-wide list as the No. 1 best middle school in HISD.

Houston Gateway Academy - Coral Campus also ranked among the statewide top 10, coming in at No. 9 with a total enrollment of 914 students. U.S. News says 82 percent of HGA students are proficient in math, and 80 percent are proficient in reading.

"Houston Gateway Academy - Coral Campus did better in math and better in reading in this metric compared with students across the state," U.S. News said in the school's profile. "In Texas, 51 percent of students tested at or above the proficient level for reading, and 41 percent tested at or above that level for math."

Right behind HGA to round out the top 10 best Texas middle schools is Houston ISD's Briarmeadow Charter School. This middle school has 600 students, 69 percent of which are proficient in math and 74 percent are proficient reading.

Briarmeadow's student-teacher ratio is 16:1, which is better than the district-wide student-teacher ratio, and it employs 38 full-time teachers.

U.S. News also ranked Briarmeadow as the second best middle school in Houston ISD.

Six additional Houston-area schools ranked among the top 25 best middle schools in Texas, including:

  • No. 18 – Cornerstone Academy, Spring Branch ISD
  • No. 19 – Mandarin Immersion Magnet School, Houston ISD
  • No. 21 – Smith Middle School, Cypress-Fairbanks ISD
  • No. 22 – Seven Lakes Junior High, Katy ISD
  • No. 23 – Houston Gateway Academy
  • No. 25 – Beckendorff Junior High, Katy ISD

The best elementary schools in Texas

Jesus A. Kawas Elementary school in Laredo was crowned the No. 1 elementary school in Texas for 2025, while two Houston-area schools made it into the top 10.Tomball ISD's Creekside Forest Elementary in The Woodlands is the No. 7 best elementary school statewide, boasting 656 students, 42 full-time teachers, and one full-time counselor. Students at this school, which U.S. News designates is situated in a "fringe rural setting," scored 90 percent efficiency in math and 94 percent efficiency in reading.Following one spot behind Creekside Forest in the statewide ranking is Sugar Land's Commonwealth Elementary School in Fort Bend ISD, coming in at No. 8. Commonwealth has a student population of 954 with 55 full-time teachers, and two full-time counselors. The school's student-teacher ratio is 17:1, and 90 percent of students are proficient in math, and 94 percent in reading.U.S. News says student success at Commonwealth is significantly higher than the rest of Fort Bend ISD."In Fort Bend Independent School District, 59 percent of students tested at or above the proficient level for reading, and 47 percent tested at or above that level for math," U.S. News said in Commonwealth's profile. "Commonwealth Elementary [also] did better in math and better in reading in this metric compared with students across the state."Other Houston-area schools that were ranked among the 25 best in Texas are:
  • No. 13 – Bess Campbell Elementary, Sugar Land, Lamar CISD
  • No. 20 – West University Elementary, Houston ISD
  • No. 23 – T.H. Rogers School, Houston ISD
  • No. 25 – Griffin Elementary, Katy ISD

"The 2025 Best Elementary and Middle Schools rankings offer parents a way to evaluate how schools are providing a high-quality education and preparing students for future success," said LaMont Jones, Ed.D., the managing editor for Education at U.S. News. "The data empowers families and communities to advocate for their children’s education. Research continues to indicate that how students perform academically at these early grade levels is a big factor in their success in high school and beyond."

------

This article originally ran on CultureMap.

Rice University launches hub in India to drive education, tech innovation abroad

global mission

Rice University is launching Rice Global India, which is a strategic initiative to expand India’s rapidly growing education and technology sectors.

“India is a country of tremendous opportunity, one where we see the potential to make a meaningful impact through collaboration in research, innovation and education,” Rice President Reginald DesRoches says in a news release. “Our presence in India is a critical step in expanding our global reach, and we are excited to engage more with India’s academic leaders and industries to address some of the most pressing challenges of our time.”

The new hub will be in the country’s third-largest city and the center of the country’s high-tech industry, Bengaluru, India, and will include collaborations with top-tier research and academic institutions.

Rice continues its collaborations with institutions like the Indian Institute of Technology (IIT) Kanpur and the Indian Institute of Science (IISc) Bengaluru. The partnerships are expected to advance research initiatives, student and faculty exchanges and collaborations in artificial intelligence, biotechnology and sustainable energy.

India was a prime spot for the location due to the energy, climate change, artificial intelligence and biotechnology studies that align with Rice’s research that is outlined in its strategic plan Momentous: Personalized Scale for Global Impact.

“India’s position as one of the world’s fastest-growing education and technology markets makes it a crucial partner for Rice’s global vision,” vice president for global at Rice Caroline Levander adds. “The U.S.-India relationship, underscored by initiatives like the U.S.-India Initiative on Critical and Emerging Technology, provides fertile ground for educational, technological and research exchanges.”

On November 18, the university hosted a ribbon-cutting ceremony in Bengaluru, India to help launch the project.

“This expansion reflects our commitment to fostering a more interconnected world where education and research transcend borders,” DesRoches says.

UH-backed project secures $3.6M to transform CO2 into sustainable fuel with cutting-edge tech

funds granted

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

------

This article originally ran on EnergyCapital.