Here are some reminders of how to serve up a home-run of a pitch to potential investors. Miguel Tovar/University of Houston

Pitching to a venture capitalist is not only the most challenging part of building a startup, it’s also the most important. You can have the next pet rock idea, but nobody will ever experience it and you’ll never make a dime if the genius of this product cannot be expressed in an investor pitch. Okay, so pet rock isn’t the best example.

Let’s say you have a product that gets rid of stretch marks overnight. Great idea, right? Of course. But if you’re in front of an investor and they ask you how your product works, and you can’t answer them, your idea will forever remain just that: an idea. It’ll never manifest itself materially, which is your goal.

Did you know that the average venture capitalist holds around 500 in-person meetings per year? Further, did you know that only one in every 10 startups will make it past the first meeting?

With so many meetings with startup founders, you better believe that investors are virtually looking for reasons to pass on you and your cordless extension cord. Or whatever fakakta contraption you’ve developed in your garage.

Well, with so much importance placed on first impressions, here are some of the most important things investors look for and notice when you pitch to them:

Value proposition

This is what separates you from the pack. This is what makes your startup a standout. A value proposition shows an investor your company’s competitive advantage. If you can explain to your potential investor why it would be their folly if they invested in a competitor over your startup, then you’ll be that much closer to rolling out your product to market. Investors want to see a product or service that is unique because that means less competition, and less risk involved.

Entrepreneurship

Sure, you might be a brilliant scientist. You may have developed nanotechnology that eviscerates dirt and bacteria so you don’t have to shower anymore. But have you put together a team that can make your company a successful business? Do you have team members with experience in whatever it is your startup does? Do you have people with credibility congruent with your startup? Your pitch is a way for investors to find these things out. If you can show them that your team has experience, passion, insightfulness, and expertise, investors will feel much better about taking a chance on you.

Confidence is key

Investors can tell if a founder is confident, but not overconfident about how far they’ve come and how far they know they can go. During a pitch, investors can tell if your team is a cohesive unit or parts of a fractured whole.

Anatomy of an investor pitch

Your potential investor will notice if your pitch is structured well. He or she will take not of whether or not your pitch is designed well. They’ll ask themselves if it’s authentic. Does it cover business metrics? Is it concise and to the point? Is the founder communicating something complex in a simple way? Doing so shows absolute understanding and a total grasp of your product and the science behind it, plus the business aspect of it.


------

This article originally appeared on the University of Houston's The Big Idea. Rene Cantu was the writer and editor at UH Division of Research.

Think you know what's happening at university tech transfer offices? Think again. Graphic by Miguel Tovar/University of Houston

Houston expert: 4 misconceptions of university tech transfer offices

houston voices

Beyond their education and research missions, universities across the nation have turned research discoveries into big business. In addition to protecting intellectual property from faculty discoveries, universities build and support startup pipelines to help researchers commercialize those technologies.

However, there are a few misconceptions when it comes to university tech transfer offices that keep faculty at bay. Here, we'll take a look at four misconceptions and explore the truth behind the thinking.

Misconception 1: Filing patent paperwork is all tech transfer offices do

While tech transfer offices are in the business of patents, many offer a full range of services to support the commercialization process. This can include everything from strategy and startup development to the establishment of enterprise and industry ventures. Many university tech transfer offices operate incubators, co-working space for startups and accelerator programs, and some even build and manage venture funds.

"At the University of Houston, we now offer lots of services to faculty, such as strategy sessions to help them understand the commercial potential of their technologies," said Chris Taylor, executive director of the UH Office of Technology Transfer and Innovation. "We also help faculty license their technologies to ensure fair use as they transition them into the market."

Misconception 2: I need to have a fully-developed idea to submit a disclosure

According to Taylor, many faculty begin interacting with tech transfer offices once they have a technology fully developed. But tech transfer offices can do much more for faculty if involved early in the process.

"Yes, we do help protect what's been developed. But, if we have a conversation at the beginning, we could help faculty shape or pivot their technologies. This will give them the greatest market potential," he said.

One of the many benefits of tech transfer offices is their ability to readily research the market.

"We can determine whether or not technologies can be disclosed, patented and licensed. It's important to know this before going through a lengthy and expensive filing process."

Misconception 3: The patent process will slow down my publication plans

Publishing researching findings may be one of the most important activities for the university researcher. However, publishing research on unprotected discoveries can result in the loss of patent rights. Therefore, filing a disclosure is very important, according to Taylor.

"Publishing is one of the best ways to market university technologies," he said. "However, industry values patented technologies, so it's better to make a small time investment to protect your IP.

Misconception 4: Getting a patent is the primary goal for tech transfer offices

As Taylor explains, the primary goal of tech transfer offices is to help faculty "transfer" their discoveries to society. And while patenting technologies is one way to do that, tech transfer offices also provide education and mentoring programs. They also support other protections such as copyrights for software.

"IP protection is important," he said. "It gives faculty control over how their technology is used, for good or for bad. So, this is an important part of the work that we do for faculty. But, we support faculty in so many other ways through the entire pipeline."

------

This article originally appeared on the University of Houston's The Big Idea. Lindsay Lewis, the author of this piece, is the executive director of communivations for the UH Division of Research.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

MD Anderson makes AI partnership to advance precision oncology

AI Oncology

Few experts will disagree that data-driven medicine is one of the most certain ways forward for our health. However, actually adopting it comes at a steep curve. But what if using the technology were democratized?

This is the question that SOPHiA GENETICS has been seeking to answer since 2011 with its universal AI platform, SOPHiA DDM. The cloud-native system analyzes and interprets complex health care data across technologies and institutions, allowing hospitals and clinicians to gain clinically actionable insights faster and at scale.

The University of Texas MD Anderson Cancer Center has just announced its official collaboration with SOPHiA GENETICS to accelerate breakthroughs in precision oncology. Together, they are developing a novel sequencing oncology test, as well as creating several programs targeted at the research and development of additional technology.

That technology will allow the hospital to develop new ways to chart the growth and changes of tumors in real time, pick the best clinical trials and medications for patients and make genomic testing more reliable. Shashikant Kulkarni, deputy division head for Molecular Pathology, and Dr. J. Bryan, assistant professor, will lead the collaboration on MD Anderson’s end.

“Cancer research has evolved rapidly, and we have more health data available than ever before. Our collaboration with SOPHiA GENETICS reflects how our lab is evolving and integrating advanced analytics and AI to better interpret complex molecular information,” Dr. Donna Hansel, division head of Pathology and Laboratory Medicine at MD Anderson, said in a press release. “This collaboration will expand our ability to translate high-dimensional data into insights that can meaningfully advance research and precision oncology.”

SOPHiA GENETICS is based in Switzerland and France, and has its U.S. offices in Boston.

“This collaboration with MD Anderson amplifies our shared ambition to push the boundaries of what is possible in cancer research,” Dr. Philippe Menu, chief product officer and chief medical officer at SOPHiA GENETICS, added in the release. “With SOPHiA DDM as a unifying analytical layer, we are enabling new discoveries, accelerating breakthroughs in precision oncology and, most importantly, enabling patients around the globe to benefit from these innovations by bringing leading technologies to all geographies quickly and at scale.”

Houston company plans lunar mission to test clean energy resource

lunar power

Houston-based natural resource and lunar development company Black Moon Energy Corporation (BMEC) announced that it is planning a robotic mission to the surface of the moon within the next five years.

The company has engaged NASA’s Jet Propulsion Laboratory (JPL) and Caltech to carry out the mission’s robotic systems, scientific instrumentation, data acquisition and mission operations. Black Moon will lead mission management, resource-assessment strategy and large-scale operations planning.

The goal of the year-long expedition will be to gather data and perform operations to determine the feasibility of a lunar Helium-3 supply chain. Helium-3 is abundant on the surface of the moon, but extremely rare on Earth. BMEC believes it could be a solution to the world's accelerating energy challenges.

Helium-3 fusion releases 4 million times more energy than the combustion of fossil fuels and four times more energy than traditional nuclear fission in a “clean” manner with no primary radioactive products or environmental issues, according to BMEC. Additionally, the company estimates that there is enough lunar Helium-3 to power humanity for thousands of years.

"By combining Black Moon's expertise in resource development with JPL and Caltech's renowned scientific and engineering capabilities, we are building the knowledge base required to power a new era of clean, abundant, and affordable energy for the entire planet," David Warden, CEO of BMEC, said in a news release.

The company says that information gathered from the planned lunar mission will support potential applications in fusion power generation, national security systems, quantum computing, radiation detection, medical imaging and cryogenic technologies.

Black Moon Energy was founded in 2022 by David Warden, Leroy Chiao, Peter Jones and Dan Warden. Chiao served as a NASA astronaut for 15 years. The other founders have held positions at Rice University, Schlumberger, BP and other major energy space organizations.

Houston co. makes breakthrough in clean carbon fiber manufacturing

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.