The NIH grant goes toward TransplantAI's work developing more precise models for heart and lung transplantation. Photo via Getty Images

The National Institute of Health has bestowed a Houston medtech company with a $2.2 million Fast-Track to Phase 2 award. InformAI will use the money for the product development and commercialization of its AI-enabled organ transplant informatics platform.

Last year, InformAI CEO Jim Havelka told InnovationMap, “A lot of organs are harvested and discarded.”

TransplantAI solves that problem, as well as organ scarcity and inefficiency in allocation of the precious resource.

How does it work? Machine learning and deep learning from a million donor transplants informs the AI, which determines who is the best recipient for each available organ using more than 500 clinical parameters. Organ transplant centers and organ procurement organizations (OPOs) will be able to use the product to make a decision on how to allocate each organ in real time. Ultimately, the tool will service 250 transplant centers and 56 OPOs around the United States.

The NIH grant goes toward developing more precise models for heart and lung transplantation (kidney and liver algorithms are further along in development thanks to a previous award from the National Science Foundation), as well as Phase 2 efforts to fully commercialize TransplantAI.

"There is an urgent need for improved and integrated predictive clinical insights in solid organ transplantation, such as for real-time assessment of waitlist mortality and the likelihood of successful post-transplantation outcomes," according to the grant’s lead clinical investigator, Abbas Rana, associate professor of surgery at Baylor College of Medicine.

“This information is essential for healthcare teams and patients to make informed decisions, particularly in complex cases where expanded criteria allocation decisions are being considered," Rana continues. "Currently, the separation of donor and recipient data into different systems requires clinical teams to conduct manual, parallel reviews for pairing assessments. Our team, along with those at other leading transplant centers nationwide, receives hundreds of organ-recipient match offers weekly.”

Organ transplantation is moving into the future, and Transplant AI is at the forefront.

InformAI has three AI-based products geared at improving health care. Photo via Getty Images

Fresh off grant, Houston health tech company's AI aims to revolutionize diagnostics, care

data-driven

In Houston, we’re lucky to have top-tier doctors in the Texas Medical Center, ready to treat us with the newest technology. But what about our family members who have to rely on rural hospitals? Thanks to one Houston company, doctors in smaller community hospitals may soon have new tools at their disposal that could improve outcomes for patients around the world.

Since InnovationMap last caught up with Jim Havelka, CEO of InformAI, two years ago, that hope has come far closer to a reality. InformAI is a VC-backed digital health company. Part of JLABS @ TMC innovation facilities, the company uses artificial intelligence to develop both diagnostic tools and clinical outcome predictors. And two of the company’s products will undergo FDA regulatory testing this year.

SinusAI, which helps to detect sinus-related diseases in CT scans, received its CE Mark — the European equivalent of FDA approval — last year and is being sold across the Atlantic today, says Havelka. He adds that in the United States alone, there are roughly 700,000 sinus surgeries that the product is positioned to support.

Another product, RadOnc-AI, is designed to help doctors prescribe radiation dose plans for head and neck cancers.

“Ideally the perfect plan would be to provide radiation to the tumor and nothing around it,” says Havelka. “We’ve built a product, RadOnc-AI, which autogenerates the dose treatment plan based on medical images of that patient.”

It can be an hours-long process for doctors to figure out the path and dose of radiation themselves, but the new product “can build that initial pass in about five minutes,” Havelka says.

That in itself is an exciting development, but because this technology was developed using the expertise of some of the world’s top oncologists, “the first pass plan is in line with what [patients would] get at tier-one institutions,” explains Havelka. This creates “tremendous equity” among patients who can afford to travel to major facilities and those that can’t.

To that end, RadOnc-AI was recently awarded a $1.55 million grant from the Cancer Prevention and Research Institute of Texas, or CPRIT, a state agency that funds cancer research. The Radiological Society of North America announced late last year that InformAI was named an Aunt Minnie Best of Radiology Finalist.

“It’s quite prestigious for our company,” says Havelka. Other recent laurels include InformAI being named one of the 10 most promising companies by the Texas Life Science Forum in November.

And InformAI is only gaining steam. A third product is earlier in its stage of development. TransplantAI will optimize donor organ and patient recipient matches.

“A lot of organs are harvested and discarded,” Havelka says.

His AI product has been trained on a million donor transplants to help determine who is the best recipient for an organ. It even takes urgency into account, based on a patient’s expected mortality within 90 days. The product is currently a fully functional prototype and will soon move through its initial regulatory clearances.

The company — currently backed by three VC funds, including DEFTA Partners, Delight Ventures, and Joyance Partners — is planning to do another seed round in Q2 of 2023.

“We’ve been able to get recognized for digital health products that can be taken to market globally,” says Havelka.

But what he says he’s most excited about is the social impact of his products. With more money raised, InformAI will be able to speed up development of additional products, including expanding the cancers that the company will be targeting. And with that, more and more patients will one day be treated with the highest level of care.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based HPE wins $931M contract to upgrade military data centers

defense data centers

Hewlett Packard Enterprise (HPE), based in Spring, Texas, which provides AI, cloud, and networking products and services, has received a $931 million contract to modernize data centers run by the federal Defense Information Systems Agency.

HPE says it will supply distributed hybrid multicloud technology to the federal agency, which provides combat support for U.S. troops. The project will feature HPE’s Private Cloud Enterprise and GreenLake offerings. It will allow DISA to scale and accelerate communications, improve AI and data analytics, boost IT efficiencies, reduce costs and more, according to a news release from HPE.

The contract comes after the completion of HPE’s test of distributed hybrid multicloud technology at Defense Information Systems Agency (DISA) data centers in Mechanicsburg, Pennsylvania, and Ogden, Utah. This technology is aimed at managing DISA’s IT infrastructure and resources across public and private clouds through one hybrid multicloud platform, according to Data Center Dynamics.

Fidelma Russo, executive vice president and general manager of hybrid cloud at HPE, said in a news release that the project will enable DISA to “deliver innovative, future-ready managed services to the agencies it supports that are operating across the globe.”

The platform being developed for DISA “is designed to mirror the look and feel of a public cloud, replicating many of the key features” offered by cloud computing businesses such as Amazon Web Services (AWS), Microsoft Azure and Google Cloud Platform, according to The Register.

In the 1990s, DISA consolidated 194 data centers into 16. According to The Register, these are the U.S. military’s most sensitive data centers.

More recently, in 2024, the Fort Meade, Maryland-based agency laid out a five-year strategy to “simplify the network globally with large-scale adoption of command IT environments,” according to Data Center Dynamics.

Astros and Rockets launch new streaming service for Houston sports fans

Sports Talk

Houston sports fans now have a way to watch their favorite teams without a cable or satellite subscription. Launched December 3, the Space City Home Network’s SCHN+ service allows consumers to watch the Houston Astros and Houston Rockets via iOS, Apple TV, Android, Amazon Fire TV, or web browser.

A subscription to SCHN+ allows sports fans to watch all Astros and Rockets games, as well as behind-the-scenes features and other on-demand content. It’s priced at $19.99 per month or $199.99 annually (plus tax). People who watch Space City Network Network via their existing cable or satellite service will be able to access SCHN+ at no additional charge.

As the Houston Chronicle notes, the Astros and Rockets were the only MLB and NBA teams not to offer a direct-to-consumer streaming option.

“We’re thrilled to offer another great option to ensure fans have access to watch games, and the SCHN+ streaming app makes it easier than ever to cheer on the Rockets,” Rockets alternate governor Patrick Fertitta said in a statement.

“Providing fans with a convenient way to watch their favorite teams, along with our network’s award-winning programming, was an essential addition. This season feels special, and we’re committed to exploring new ways to elevate our broadcasts for Rockets fans to enjoy.”

Astros owner Jim Crane echoed Feritta’s comments, adding, “Providing fans options on how they view our games is important as we continue to grow the game – we want to make it accessible to as large an audience as possible. We are looking forward to the 2026 season and more Astros fans watching our players compete for another championship.”

SCHN+ is available to customers in Texas; Louisiana; Arkansas; Oklahoma; and the following counties in New Mexico: Dona Ana, Eddy, Lea, Chaves, Roosevelt, Curry, Quay, Union, and Debaca. Fans outside these areas will need to subscribe to the NBA and MLB out-of-market services.

---

This article originally appeared on CultureMap.com.

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.