From green energy to consumer tech, Time names its top innovations of the year — and three Houston-born inventions made the cut. Photo via Getty Images

Innovations from three Houston companies have been crowned among the top inventions of the year.

Time magazine’s "200 Best Inventions of 2024" identified top innovations across consumer goods, home health, robotics, sustainability, and two dozen other categories.

Fervo Energy, a provider of geothermal power, was recognized the Green Energy category for its FervoFlex system. As Time explains, the system enables horizontal drilling into hot rock under the earth’s surface and pumping in water to generate hot water and steam. The geothermal energy that’s produced can be stored and released for future use by Fervo customers.

Jack Norbeck, Fervo’s co-founder and chief technology officer, predicts that by 2050, geothermal energy will become “the backbone of the decarbonized energy system.”

In September, Fervo secured a $100 million bridge loan for the first phase of its ongoing Cape Station project in Utah, which is being touted as the world’s largest geothermal energy plant. Slated for completion in June 2026, this initial phase is expected to generate 90 megawatts of renewable energy. Ultimately, the plant is supposed to supply 400 megawatts of clean energy by 2028 for customers in California.

Time also lauded NanoTech Materials among its Manufacturing and Materials honorees for its Insulative Ceramic Particle. This powder can be added to materials like drywall or shingles to improve fire resistance and decrease heat penetration, according to Time. NanoTech’s Wildfire Shield coating for buildings contains the powder. Wildfire Shield prevents damage to materials and harm from noxious smoke.

NanoTech’s other product, Cool Roof Coat, is painted on a building to decrease HVAC use. This year, NanoTech moved into a 43,000-square-foot space in Katy, Texas, and brought on new partners that expanded the company's reach in the Middle East and Singapore.

The third Houston company to be praised by Time is BiVACOR — named to its Experimental category of the list. This year, the company’s artificial heart has kept three U.S. patients alive long enough to wait for donor organs, according to Time, the first of these operations took place this summer in Houston.

Dr. William Cohn, chief medical officer of BiVACOR, previously told InnovationMap that while the Total Artificial Heart is being used currently as a "bridge-to-transplant" device, he believes it has the potential to be a permanent solution for the 200,000 patients who die of heart failure annually. Last year, only around 4,000 patients were able to receive heart transplants.

The full list of this year's top inventions is available online.

Dr. William Cohn is the chief medical officer for BiVACOR, a medical device company creating the first total artificial heart. Photo via TMC

Why this Houston medical device innovator is pumped up for the first total artificial heart

HOUSTON INNOVATORS PODCAST EPISODE 248

It's hard to understate the impact Dr. William Cohn has had on cardiovascular health as a surgeon at the Texas Heart Institute or on health care innovation as the director of the Center for Device Innovation at the Texas Medical Center. However, his role as chief medical officer of BiVACOR might be his most significant contribution to health care yet.

The company's Total Artificial Heart is unlike any cardiovascular device that's existed, Cohn explains on the Houston Innovators Podcast. While most devices are used temporarily for patients awaiting a heart transplant, BiVACOR's TAH has the potential to be a permanent solution for the 200,000 patients who die of heart failure annually. Last year, only around 4,000 patients were able to receive heart transplants.

"Artificial hearts historically have had bladders that ejected and filled 144,000 times a day. They work great for temporary support, but no one is suggesting they are permanent devices," Cohn says on the show.

The difference with BiVACOR's device is it abandons the bladder approach. Cohn explains that as assist pumps evolved — something his colleague, Dr. Bud Frasier, had a huge impact on — they featured new turbine and rotor technology. Daniel Timms, BiVACOR's founder and CTO, iterated on this technology beginning when he was a postdoctoral student at Queensland University of Technology in Australia.

"BiVACOR is the first artificial heart that leverages what we learned from that whole period — it has no bladders, it has no valves. It has one moving part, and that moving part is suspended in an electromagnetic field controlled by a computer and changed thousands of times a second," Cohn says. "It will never wear out, and that's why we think it's the world's first total artificial heart."

The company is seeing momentum, celebrating its first successful human implantation last month. The device was used for eight days on a patient at Baylor St. Luke’s Medical Center before the patient received a heart transplant.

Cohn says that BiVACOR has plans to use the TAH as "bridge-to-transplant" device in several other surgeries and expects to get FDA approval for that purpose in the next three to four years before working toward clearance for total artificial heart transplants.

Cohn has worked to support medical device startups at CDI at TMC for the seven years it has existed — first under Johnson and Johnson and then under TMC when it took the program over. He describes the center and its location as the ideal place for developing the future of health care, with Houston rising up to compete with regions known for medical device success — both coasts and Minnesota.

"Being in the shadow of the largest medical center on the planet — 106,000 employees show up there every 24 hours," Cohn says, "if you want to innovate, this is the place to do it."

Revisiting a conversation with Dr. Joseph Rogers, president and CEO of the Texas Heart Institute, on the Houston Innovators Podcast. Photo via texasheart.org

Play it back: How this Houstonian is leading heart health innovation

HOUSTON INNOVATORS PODCAST EPISODE 246

Heart health innovation is at a major moment in history — and Houston is at the center of it.

Last summer, Dr. Joseph Rogers, president and CEO of the Houston-based Texas Heart Institute, joined the Houston Innovators Podcast to share how he came to be at the helm of THI, as well as the incredible technologies the institute is working on to address heart failure, a global epidemic affecting at least 26 million people worldwide, 6.2 million adults in the U.S.

This month, one of THI’s technologies reached a major milestone. BiVACOR, a Houston company successfully implanted the company's first Total Artificial Heart in a human. The device was implanted in the patient on July 9. Eight days later, a donor heart became available and was transplanted into the patient, removing the TAH, establishing the device as a successful bridge-to-heart-transplant solution for patients, THI reported.

In addition to this breakthrough in health tech, THI is focused on addressing Cardiometabolic Syndrome at a new conference on Friday, August 23, in Houston. The full-day symposium will take place in collaboration with Arianna Huffington, the founder and CEO of Thrive Global. Dr. Rogers is co-directing the program with Dr. Stephanie Coulter, medical director for THI Center for Women’s Heart & Vascular Health.


In the episode, Rogers explains why he's bullish on Houston and THI leading heart health innovation alongside other health care organizations — nonprofits, universities, local government — to collaborate in ways never been done before. And THI is dedicated to this mission.

"We should act as a convener," Rogers says. "Houston is the place to do this.

"The reason I think this is such an important community to address this problem is it's the most diverse city in the United States. And I've never lived anywhere or heard of another city that I was so convinced believed they could do anything they set their minds to. It's about making the community aware of the problem and a potential solution — and then working on trying to solve it," he continues. "But I think all of the pieces are here to show the world how to do this at a community level."

BiVACOR and The Texas Heart Institute have celebrated a major milestone in the future of heart health. Photo courtesy of BiVACOR

Houston medical device startup implants artificial heart in first human patient

big win

Heart health tech company BiVACOR and The Texas Heart Institute announced that they successfully implanted the company's first Total Artificial Heart in a human at Baylor St. Luke’s Medical Center in the TMC.

The milestone is part of an FDA-approved early feasibility study that will test the safety and performance of the TAH device, which is based on a magnetically levitated rotor that takes over functions of a failing heart while a patient is awaiting a heart transplant, according to a statement from the organizations.

The "bridge-to-transplant" device could support an active adult male, as well as many women and children suffering from severe biventricular heart failure or univentricular heart failure.

"With heart failure remaining a leading cause of mortality globally, the BiVACOR TAH offers a beacon of hope for countless patients awaiting a heart transplant,” Dr. Joseph Rogers, president and CEO of THI and national principal investigator on the research, says in a statement. “We are proud to be at the forefront of this medical breakthrough, working alongside the dedicated teams at BiVACOR, Baylor College of Medicine, and Baylor St. Luke’s Medical Center to transform the future of heart failure therapy for this vulnerable population.”

BiVACOR received approval from the FDA for the early feasibility study in late 2023 and has four other patients enrolled in the study. At the time the study was approved, 10 hospitals were enrolled as possible sites.

“I’m incredibly proud to witness the successful first-in-human implant of our TAH. This achievement would not have been possible without the courage of our first patient and their family, the dedication of our team, and our expert collaborators at The Texas Heart Institute ... our TAH brings us one step closer to providing a desperately needed option for people with end-stage heart failure who require support while waiting for a heart transplant. I look forward to continuing the next phase of our clinical trial,” Daniel Timms, PhD, founder and CTO of BiVACOR, adds.

About 100,000 patients suffering from severe heart failure could benefit from BiVACOR’s artificial heart, the company says. Globally, only about 6,000 heart transplants are performed each year, while 26 million people worldwide are affected by heart failure.

BiVACOR was founded in 2008 and maintains its headquarters in Houston, along with offices in Huntington Beach, California, and Brisbane, Australia.

To date, the company has raised nearly $50.8 million, according to CB Insights. The company raised $18 million in 2023, and $22 million in 2021.

Earlier this year, BiVACOR named a new CEO in Jim Dillon, a longtime executive in the medical device sector.

Last summer, Rogers joined the Houston Innovators Podcast to share his excitement with THI's innovations.


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University launches hub in India to drive education, tech innovation abroad

global mission

Rice University is launching Rice Global India, which is a strategic initiative to expand India’s rapidly growing education and technology sectors.

“India is a country of tremendous opportunity, one where we see the potential to make a meaningful impact through collaboration in research, innovation and education,” Rice President Reginald DesRoches says in a news release. “Our presence in India is a critical step in expanding our global reach, and we are excited to engage more with India’s academic leaders and industries to address some of the most pressing challenges of our time.”

The new hub will be in the country’s third-largest city and the center of the country’s high-tech industry, Bengaluru, India, and will include collaborations with top-tier research and academic institutions.

Rice continues its collaborations with institutions like the Indian Institute of Technology (IIT) Kanpur and the Indian Institute of Science (IISc) Bengaluru. The partnerships are expected to advance research initiatives, student and faculty exchanges and collaborations in artificial intelligence, biotechnology and sustainable energy.

India was a prime spot for the location due to the energy, climate change, artificial intelligence and biotechnology studies that align with Rice’s research that is outlined in its strategic plan Momentous: Personalized Scale for Global Impact.

“India’s position as one of the world’s fastest-growing education and technology markets makes it a crucial partner for Rice’s global vision,” vice president for global at Rice Caroline Levander adds. “The U.S.-India relationship, underscored by initiatives like the U.S.-India Initiative on Critical and Emerging Technology, provides fertile ground for educational, technological and research exchanges.”

On November 18, the university hosted a ribbon-cutting ceremony in Bengaluru, India to help launch the project.

“This expansion reflects our commitment to fostering a more interconnected world where education and research transcend borders,” DesRoches says.

UH-backed project secures $3.6M to transform CO2 into sustainable fuel with cutting-edge tech

funds granted

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

------

This article originally ran on EnergyCapital.

Houston innovator drives collaboration, access to investment with female-focused group

HOUSTON INNOVATORS PODCAST EPISODE 262

After working in technology in her home country of Pakistan, Samina Farid, who was raised in the United States, found her way to Houston in the '70s where business was booming.

She was recruited to work at Houston Natural Gas — a company that would later merge and create Enron — where she rose through the ranks and oversaw systems development for the company before taking on a role running the pipelines.

"When you're in technology, you're always looking for inefficiencies, and you always see areas where you can improve," Farid says on the Houston Innovators Podcast, explaining that she moved on from Enron in the mid-'80s, which was an exciting time for the industry.

"We had these silos of data across the industry, and I felt like we needed to be communicating better, having a good source of data, and making sure we weren't continuing to have the problems we were having," she says. "That was really the seed that got me started in the idea of building a company."

She co-founded Merrick Systems, a software solutions business for managing oil and gas production, with her nephew, and thus began her own entrepreneurial journey. She came to another crossroads in her career after selling that business in 2014 and surviving her own battle with breast cancer.

"I got involved in investing because the guys used to talk about it — there was always men around me," Farid says. "I was curious."

In 2019, she joined an organization called Golden Seeds. Founded in 2005 in New York, the network of angel investors funding female-founded enterprises has grown to around 280 members across eight chapters. Suzan Deison, CEO of the Houston Women's Chamber, was integral in bringing the organization to Houston, and now Farid leads it as head of the Houston Chapter of Golden Seeds.

For Farid, the opportunity for Houston is the national network of investors — both to connect local female founders to potential capital from coast to coast and to give Houston investors deal flow from across the country.

"It was so hard for me to get funding for my own company," Farid says. "Having access to capital was only on the coasts. Software and startups was too risky."

Now, with Golden Seeds, the opportunity is there — and Farid says its an extremely collaborative investor network, working with local organizations like the Houston Angel Network and TiE Houston.

"With angel investing, when we put our money in, we want these companies to succeed," she says."We want more people to see these companies and to invest in them. We're not competing. We want to work with others to help these companies succeed."