From a supercomputer making its debut in West Houston to a behind-the-scenes look at Amazon's artificial intelligence-enabled fulfillment center, these were Houston's top stories in tech. Natalie Harms/InnovationMap

Editor's note: Houston had some big stories in technology this year, from a peek inside Amazon's artificial intelligence-enabled Houston facility and the opening of a new supercomputer to space-focused Houston startups and the future of virtual reality.

Massive data center officially opens just west of Houston

Matthew Lamont is managing director at DownUnder GeoSolutions' which just opened its new, powerful data center west of Houston. Courtesy of DUG

DownUnder GeoSolutions has officially opened its new data centre in Skybox Houston in Katy, Texas. It's being billed as one of the most powerful supercomputers on earth.

The center, which houses DUG's geophysical cloud service, DUG McCloud, celebrated its grand opening on Thursday, May 16. The company's data hall has 15 megawatts of power and resides in a building designed to withstand hurricane-force winds up to 190 mph.

A second, identical hall is already planned to be built out later this year. Together, the two machines will have a capacity of 650 petaflop, which is a measurement of computing speed that's equal to one thousand million million floating-point operations per second. Continue reading.

5 startups keeping Houston known as the Space City

Houston celebrated 50 years since the Apollo moon landing on July 20. Here are some startups that are going to be a part of the next 50 years of space tech in Houston. Photo via NASA.gov

This month, for the most part, has been looking back on the history Houston has as the Space City in honor of the 50th anniversary of the moon landing on July 20. While it's great to recognize the men and women who made this city the major player in space exploration that it is, there are still entrepreneurs today with space applications and experience that represent the future of the Space City. Continue reading.

How Amazon's Houston fulfillment center uses AI technology and robotics to move millions of products

From robotics to artificial intelligence, here's how Amazon gets its products to Houstonians in record time. Photo by Natalie Harms/InnovationMap

Last summer, Amazon opened the doors to its North Houston distribution center — one of the company's 50 centers worldwide that uses automation and robotics to fulfill online orders.

The Pinto Business Park facility has millions of products in inventory across four floors. Products that are 25 pounds or less (nothing heavier is stocked at this location) pass through 20 miles of conveyor belts, 1,500 employees, and hundreds of robots.

The center also has daily tours open to the public. We recently visited to see for ourselves the process a product goes through at this Houston plant. From stowing to shipping, here's how packages go from your shopping cart to your front porch. Continue reading.

Developments in virtual reality technology are changing the workforce, say Houston experts

The solution to Houston's workforce problem might be right in front of our eyes. Getty Images

Everyone's job has training associated with it — from surgeons to construction crane operators — and there's a growing market need for faster, more thorough training of our workforce.

"The best way to learn how to do something, is to just get out and do it," says Eric Liga, co-founder of HoustonVR. "But there are a lot of reasons why you can't do that in certain types of training."

Augmented and virtual reality training programs are on the rise, and Liga cites safety, cost, and unpredictable work environments as some of these most obvious reasons reasons to pivot to training employees through extended reality. This type of training also provides portability and has proven higher retention, Liga says in his keynote speech at Station Houston's AR/VR discuss on April 25.

"You get a much higher retention rate when you actually go out and do something — physically going through the motions — than you do sitting in a classroom or reading a book," he says. Continue reading.

Recently renovated Downtown Houston office space snags leases from 2 tech companies

Main&Co's office space is now 100 percent leased. Courtesy of Main&Co

Two tech-focused companies moved into a newly developed office space in downtown Houston at the intersection of Main Street and Commerce Street. One company relocated its Houston office, and the other company has expanded to the city for the first time.

Oil and gas AI-enabled analytics platform, Ruths.ai relocated its downtown office to Main&Co, located at 114 Main St. The company has 8,457 square feet of office space in the recently renovated historic building.

Meanwhile, global robotics process automation company UiPath has expanded to build a Houston team. The computer software company is based in New York, but has a presence in 18 countries. The company's office has 5,187 square feet of Main&Co's office space. Continue reading.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH researchers develop breakthrough material to boost efficiency of sodium-ion batteries

eyes on clean energy

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

------

This article originally appeared on EnergyCapital.

Houston hospital names leading cancer scientist as new academic head

new hire

Houston Methodist Academic Institute has named cancer clinician and scientist Dr. Jenny Chang as its new executive vice president, president, CEO, and chief academic officer.

Chang was selected following a national search and will succeed Dr. H. Dirk Sostman, who will retire in February after 20 years of leadership. Chang is the director of the Houston Methodist Dr. Mary and Ron Neal Cancer Center and the Emily Herrmann Presidential Distinguished Chair in Cancer Research. She has been with Houston Methodist for 15 years.

Over the last five years, Chang has served as the institute’s chief clinical science officer and is credited with strengthening cancer clinical trials. Her work has focused on therapy-resistant cancer stem cells and their treatment, particularly relating to breast cancer.

Her work has generated more than $35 million in funding for Houston Methodist from organizations like the National Institutes of Health and the National Cancer Institute, according to the health care system. In 2021, Dr. Mary Neal and her husband Ron Neal, whom the cancer center is now named after, donated $25 million to support her and her team’s research on advanced cancer therapy.

In her new role, Chang will work to expand clinical and translational research and education across Houston Methodist in digital health, robotics and bioengineered therapeutics.

“Dr. Chang’s dedication to Houston Methodist is unparalleled,” Dr. Marc L. Boom, Houston Methodist president and CEO, said in a news release. “She is committed to our mission and to helping our patients, and her clinical expertise, research innovation and health care leadership make her the ideal choice for leading our academic mission into an exciting new chapter.”

Chang is a member of the American Association of Cancer Research (AACR) Stand Up to Cancer Scientific Advisory Council. She earned her medical degree from Cambridge University in England and completed fellowship training in medical oncology at the Royal Marsden Hospital/Institute for Cancer Research. She earned her research doctorate from the University of London.

She is also a professor at Weill Cornell Medical School, which is affiliated with the Houston Methodist Academic Institute.

Texas A&M awarded $1.3M federal grant to develop clean energy tech from electronic waste

seeing green

Texas A&M University in College Station has received a nearly $1.3 million federal grant for development of clean energy technology.

The university will use the $1,280,553 grant from the U.S. Department of Energy to develop a cost-effective, sustainable method for extracting rare earth elements from electronic waste.

Rare earth elements (REEs) are a set of 17 metallic elements.

“REEs are essential components of more than 200 products, especially high-tech consumer products, such as cellular telephones, computer hard drives, electric and hybrid vehicles, and flat-screen monitors and televisions,” according to the Eos news website.

REEs also are found in defense equipment and technology such as electronic displays, guidance systems, lasers, and radar and sonar systems, says Eos.

The grant awarded to Texas A&M was among $17 million in DOE grants given to 14 projects that seek to accelerate innovation in the critical materials sector. The federal Energy Act of 2020 defines a critical material — such as aluminum, cobalt, copper, lithium, magnesium, nickel, and platinum — as a substance that faces a high risk of supply chain disruption and “serves an essential function” in the energy sector.

“DOE is helping reduce the nation’s dependence on foreign supply chains through innovative solutions that will tap domestic sources of the critical materials needed for next-generation technologies,” says U.S. Energy Secretary Jennifer Granholm. “These investments — part of our industrial strategy — will keep America’s growing manufacturing industry competitive while delivering economic benefits to communities nationwide.”

------

This article originally appeared on EnergyCapital.