Tech Space

Recently renovated Downtown Houston office space snags leases from 2 tech companies

Main&Co's office space is now 100 percent leased. Courtesy of Main&Co

Two tech-focused companies moved into a newly developed office space in downtown Houston at the intersection of Main Street and Commerce Street. One company relocated its Houston office, and the other company has expanded to the city for the first time.

Oil and gas AI-enabled analytics platform, Ruths.ai relocated its downtown office to Main&Co, located at 114 Main St. The company has 8,457 square feet of office space in the recently renovated historic building.

Meanwhile, global robotics process automation company UiPath has expanded to build a Houston team. The computer software company is based in New York, but has a presence in 18 countries. The company's office has 5,187 square feet of Main&Co's office space.

The two leases account for 100 percent of the office space in the mixed-use facility, which is owned by Houston-based investment firm, NewForm Real Estate. The company does have 1,136 square foot street-level retail space left yet to rent.

The five-story development completed renovations in the summer of last year and has, in addition to the office space, bars — including The Cottonmouth Club, ETRO Nightclub and Lilly&Bloom — and a contemporary art gallery on the fifth floor called the LCD Gallery.

"Main&Co has become a bustling epicenter of culture, arts, nightlife, and commerce in Downtown Houston," says Dan Zimmerman, president of NewForm Real Estate, in a release. "Restoring these iconic historic buildings and leasing the office space to cutting-edge tech firms is a testament that landmark real estate has a place in the future landscape of our city."

Last week, Greenway Plaza announced three different tech organizations that are moving to or had moved to its office park. Those transactions accounted for over 20,000 square feet of space.

Recently renovated

Courtesy of Main&Co

The renovation of the structure concluded in June of 2018.


Trending News

Building Houston

 
 

This UH engineer is hoping to make his mark on cancer detection. Photo via UH.edu

Early stage cancer is hard to detect, mostly because traditional diagnostic imaging cannot detect tumors smaller than a certain size. One Houston innovator is looking to change that.

Wei-Chuan Shih, professor of electrical and computer engineering at the University of Houston's Cullen College of Engineering, recently published his findings in IEEE Sensors journal. According to a news release from UH, the cells around cancer tumors are small — ~30-150nm in diameter — and complex, and the precise detection of these exosome-carried biomarkers with molecular specificity has been elusive, until now.

"This work demonstrates, for the first time, that the strong synergy of arrayed radiative coupling and substrate undercut can enable high-performance biosensing in the visible light spectrum where high-quality, low-cost silicon detectors are readily available for point-of-care application," says Shih in the release. "The result is a remarkable sensitivity improvement, with a refractive index sensitivity increase from 207 nm/RIU to 578 nm/RIU."

Wei-Chuan Shih is a professor of electrical and computer engineering at the University of Houston's Cullen College of Engineering. Photo via UH.edu

What Shih has done is essentially restored the electric field around nanodisks, providing accessibility to an otherwise buried enhanced electric field. Nanodisks are antibody-functionalized artificial nanostructures which help capture exosomes with molecular specificity.

"We report radiatively coupled arrayed gold nanodisks on invisible substrate (AGNIS) as a label-free (no need for fluorescent labels), cost-effective, and high-performance platform for molecularly specific exosome biosensing. The AGNIS substrate has been fabricated by wafer-scale nanosphere lithography without the need for costly lithography," says Shih in the release.

This process speeds up screening of the surface proteins of exosomes for diagnostics and biomarker discovery. Current exosome profiling — which relies primarily on DNA sequencing technology, fluorescent techniques such as flow cytometry, or enzyme-linked immunosorbent assay (ELISA) — is labor-intensive and costly. Shih's goal is to amplify the signal by developing the label-free technique, lowering the cost and making diagnosis easier and equitable.

"By decorating the gold nanodisks surface with different antibodies (e.g., CD9, CD63, and CD81), label-free exosome profiling has shown increased expression of all three surface proteins in cancer-derived exosomes," said Shih. "The sensitivity for detecting exosomes is within 112-600 (exosomes/μL), which would be sufficient in many clinical applications."

Trending News