Halliburton Labs has announced its inaugural cohort of energy tech companies. Photo courtesy of Halliburton

Halliburton's new in-house incubator program that was announced last year has named three new energy tech startups that are moving in.

Halliburton Labs, which originally launched last summer, was established to promote innovation amidst the energy transition. Member startups will have access to the Halliburton facilities, the company's experts, and its network, and will be located in the company's North Houston headquarters.

"We are excited to welcome a strong group of companies who have demonstrated promising innovation and are working to solve important clean energy challenges," says Dale Winger, managing director of Halliburton Labs, in a news release. "We look forward to collaborating with these companies and providing world-class industrial capabilities and expertise to help them achieve further scale."

Three energy tech startups will join Houston-based Nanotech Inc., the first Halliburton Labs startup in the program. Here are the three selected companies:

Enexor BioEnergy

Tennessee-based Enexor BioEnergy is working to address the world's organic and plastic waste problems. The company has developed a patented bioenergy system that can convert almost any organic, plastic, or biomass waste in any combination, into affordable, renewable power and thermal energy.

"We are seeing tremendous inbound customer demand for Enexor's renewable energy solution from across the world," says Lee Jestings, founder and CEO of Enexor BioEnergy, in the release. "We are honored to join Halliburton Labs. Their broad global network and deep manufacturing expertise will assist Enexor in meeting its significant worldwide demand while making a significantly positive environmental impact. This is a major step forward in our worldwide launch."

Momentum Technologies

Dallas-based Momentum Technologies has created an innovative way to recycle lithium battery by working with recyclers and manufacturers to recover critical materials from waste for reuse. The company was formed through a partnership with the U.S. Department of Energy, and Momentum's patented MSX technology has the ability to recover pure critical materials from spent lithium batteries, rare earth permanent magnets and other valuable waste products.

"Halliburton Labs is the ideal environment to scale our cutting-edge lithium battery recycling technology. We are excited to tap into Halliburton's Labs engineering and supply chain expertise and global business network to accelerate Momentum to the forefront," says Preston Bryant, CEO of Momentum Technologies, in the release.

OCO Inc.

Based in Oregon, OCO Inc.'s technology can transform carbon dioxide, water, and zero carbon electricity into a hydrogen-rich platform chemical that can be used to make a wide variety of zero-carbon chemicals, materials, and fuels. OCO's process is highly carbon negative and much less expensive than existing fossil-based processes and feedstocks.

"The valuable industrial expertise and network of Halliburton Labs will support our build, deployment, and demonstration of a full-size commercial grade system, the next step on our commercialization journey towards an industrial scale plant," says Todd Brix, founder and CEO of OCO Inc., in the release.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston biotech company tests hard-to-fight cancer therapeutics

fighting cancer

A Houston-based, female-founded biotech company has developed a treatment that could prove to be an effective therapy for a rare blood cancer.

Cellenkos Therapeutics has completed promising Phase 1b testing of its Treg cell therapy, CK0804, in the fight against myelofibrosis. According to a news release from the Cellenkos team, the use of its cord-blood-derived therapeutics could signal a paradigm shift for the treatment of this hard-to-fight cancer.

Cellenkos was founded by MD Anderson Cancer Center physician and professor Simrit Parmar. Her research at the hospital displayed the ability of a unique subset of T cells’ capability to home in on a patient’s bone marrow, restoring immune balance, and potentially halting disease progression.

Myelofibrosis has long been treated primarily with JAK (Janus Kinase) inhibitors, medications that help to block inflammatory enzymes. They work by suppressing the immune response to the blood cancer, but don’t slow the progression of the malady. And they’re not effective for every patient.

“There is a significant need for new therapeutic options for patients living with myelofibrosis who have suboptimal responses to approved JAK inhibitors,” Parmar says. “We are greatly encouraged by the safety profile and early signs of efficacy observed in this patient cohort and look forward to continuing our evaluation of the clinical potential of CK0804 in our planned expansion cohort.”

The expansion cohort is currently enrolling patients with myelofibrosis. What exactly are sufferers dealing with? Myelofibrosis is a chronic disease that causes bone marrow to form scar tissue. This makes it difficult for the body to produce normal blood cells, leaving patients with fatigue, spleen enlargement and night sweats.

Myelofibrosis is rare, with just 16,000 to 18,500 people affected in the United States. But for patients who don’t respond well to JAKs, the prognosis could mean a shorter span than the six-year median survival rate outlined for the disease by Cleveland Clinic.

Helping myelofibrosis patients to thrive isn’t the only goal for Cellenkos right now.

The company seeks to aid people with rare conditions, particularly inflammatory and autoimmune disorders, with the use of CK0804, but also other candidates including one known as CK0801. The latter drug has shown promising efficacy in aplastic anemia, including transfusion independence in treated patients.

The company closed its $15 million series A round led by BVCF Management, based in Shanghai, in 2021. Read more here.

Pioneering Houston biotech startup expands to Brazil for next phase

On the Move

Houston biotech company Cemvita has expanded into Brazil. The company officially established a new subsidiary in the country under the same name.

According to an announcement made earlier this month, the expansion aims to capitalize on Brazil’s progressive regulatory framework, including Brazil’s Fuel of the Future Law, which was enacted in 2024. The company said the expansion also aims to coincide with the 2025 COP30, the UN’s climate change conference, which will be hosted in Brazil in November.

Cemvita utilizes synthetic biology to transform carbon emissions into valuable bio-based chemicals.

“For decades Brazil has pioneered the bioeconomy, and now the time has come to create the future of the circular bioeconomy,” Moji Karimi, CEO of Cemvita, said in a news release. “Our vision is to combine the innovation Cemvita is known for with Brazil’s expertise and resources to create an ecosystem where waste becomes opportunity and sustainability drives growth. By joining forces with Brazilian partners, Cemvita aims to build on Brazil’s storied history in the bioeconomy while laying the groundwork for a circular and sustainable future.”

The Fuel of the Future Law mandates an increase in the biodiesel content of diesel fuel, starting from 15 percent in March and increasing to 20 percent by 2030. It also requires the adoption of Sustainable Aviation Fuel (SAF) and for domestic flights to reduce greenhouse gas emissions by 1 percent starting in 2027, growing to 10 percent reduction by 2037.

Cemvita agreed to a 20-year contract that specified it would supply up to 50 million gallons of SAF annually to United Airlines in 2023.

"This is all made possible by our innovative technology, which transforms carbon waste into value,” Marcio Da Silva, VP of Innovation, said in a news release. “Unlike traditional methods, it requires neither a large land footprint nor clean freshwater, ensuring minimal environmental impact. At the same time, it produces high-value green chemicals—such as sustainable oils and biofuels—without competing with the critical resources needed for food production."

In 2024, Cemvita became capable of generating 500 barrels per day of sustainable oil from carbon waste at its first commercial plant. As a result, Cemvita quadrupled output at its Houston plant. The company had originally planned to reach this milestone in 2029.

---

This story originally appeared on our sister site, EnergyCapitalHTX.