Yaxin Wang leads the IDEA Lab at the Texas Heart Institute. Photo via texasheart.org

In 1969, Dr. Denton A. Cooley implanted the first total artificial heart in a living patient. Most Houstonians know Cooley’s name, but fewer can name his colleague, Dr. Domingo Liotta, who created the device. Liotta died last year at the age of 97, but his work continues at the Texas Heart Institute.

Meet Yaxin Wang, PhD. The research engineer leads the IDEA Lab at THI. IDEA stands for Innovative Device & Engineering Applications, an apt description of what Wang and her colleagues do. She’s currently focused intensely on projects that could radically change transplantation for patients in need of an artificial heart or new, healthy lungs.

Specifically, Wang is helping to develop a pediatric left ventricular assist device (NeoVAD) to mechanically pump that part of the heart in infants and small children born with heart defects.

“There aren’t a lot of options for very small kids,” explains Wang. “That’s why we’re working on an implantable LVAD for very young kids.”

In fact, as many as 14,000 children with congenital heart disease are hospitalized each year waiting for a new heart, but only around 500 pediatric transplants actually take place.

Essentially, once patients reach their teens, their chest cavities are large enough for an adult donor heart. But smaller children means smaller rib cages and fewer available hearts. For children born with heart disease, Wang’s LVAD could be a lifesaver. Because she has crafted minimally invasive devices that were developed for long-term use, patients could live far longer than before.

The project, funded by a $2.8 million NIH grant, has a big name attached. Dr. O.H. Frazier is a THI legend who claims to have performed 900 LVAD implantations, not to mention some 1,200 heart transplants. In April, the team published their initial findings regarding the success of and improvements in making rotary LVADs over the last half-century.

A different team, also led by Frazier and Wang, received a pair of grants this summer. That includes $2.8 million from the NIH and a total of $7.8 million from a DoD focused program and a THI sub-award. Their work will center on a novel centrifugal left-ventricular assist device intended for end-stage heart failure patients, a potentially safer alternative to a heart transplant.

But Wang isn’t solely focused on the heart. Working with Dr. Gabriel Loor, a cardiothoracic surgeon at Baylor College of Medicine, Wang is also responsible for a method of preserving the lungs for a longer stretch of time, which would allow for further transport, and in the more distant future, potential genetic modification before transplantation. Using animal models for the moment, “they can survive for several hours without any issues,” says Wang.

The pioneering researcher is well on her way to making a name for herself at the Texas Heart Institute and beyond. And soon, she’ll be saving countless lives.

The Texas Heart Institute recently received its largest charitable donation in its history. Photo courtesy of THI

Massive $32M gift from former patient, new UH deal pump big changes into Houston organization

all heart

Leadership at The Texas Heart Institute has two major things to celebrate. First, it just received a $32 million donation from a patient — the largest charitable donation in its history.

Shortly after that news came out, the institute announced a new partnership with the University of Houston Tilman J. Fertitta Family College of Medicine that allows those UH medical students to join a clinical rotation at The Texas Heart Institute. The alliance means valuable insights and experience with both inpatient and outpatient cardiology for UH's future doctors.

"Students will have the chance to develop their skills in the diagnosis and management of cardiovascular conditions and will be taught by outstanding clinical educators,” said Dr. Joseph G. Rogers, president and CEO of The Texas Heart Institute and heart failure specialist at The Texas Heart Institute Center for Cardiovascular Care, in a press release announcing the news.

A game-changing gift that's all heart

As for that mammoth gift, the $32 million donation comes from Dr. Frederick M. Weissman, a neurologist from New York who was a patient at the Institute 40 years ago. Fittingly, huis gift will be used to support cardiovascular research.

This isn't Weissman's first gift to the institution. That came following his experience there in the mid-1980s, when he was treated by world-renowned cardiac surgeon Dr. Denton A. Cooley.

In November of 1986, Weissman wrote a check for $5,000; another followed the next month, with a note that read, in part, “my conscience compels me to make another contribution to The Texas Heart Institute. I don’t think I could ever repay you for what you and your staff have done for me.” Weissman and Cooley would go on to be friends throughout their lives.

When Dr. Weissman died in 2005, he left The Texas Heart Institute $500,000. The organization recently received the residual of his estate — valued at more than $32 million.

“Those of us who were fortunate enough to work with and be trained by Dr. Cooley know he was much more than just an incredibly gifted surgeon," renowned transplant surgeon and Co-director of THI’s Center for Preclinical Surgical & Interventional Research, Dr. O.H. “Bud” Frazier, said in press materials announcing the donation. "He established lifelong relationships with his patients and encouraged all of us to do the same. Dr. Weissman’s extraordinary generosity reflects the impact Dr. Cooley still has on the Institute he founded.”

A big leap for THI and the Coogs

Looking ahead, this game-changing gift and new affiliation with UH promises big things for students, doctors, researchers, and patients.

Medical students in rotation at The Texas Heart Institute will be exposed to progressive clinical care, allowing them to gain a deep understanding of the etiology, pathophysiology and management of cardiovascular disease from prevention to the most contemporary treatments available today. This level of hands-on experience is invaluable for future physicians, and will certainly contribute to the advancement of cardiovascular medicine.

"We are honored to launch this new affiliation with Fertitta Family College of Medicine,” said Dr. Jorge Escobar, director of undergraduate medical education at The Texas Heart Institute. "With new advances in diagnostic imaging, bedside testing, and clinical trials coupled with the complex care we provide to our patients, the rotation will be an impactful experience for the students."

Pumping with growth

Meanwhile, THI recently established The Texas Heart Institute Research Innovation Fund to propel the next generation of cardiovascular research by sparking discovery, supporting innovation, and recognizing excellence in high-risk, high-reward scientific exploration.

To that end, $5 million of the Weissman bequest has been designated to match philanthropic commitments of $10,000 or greater made to THI’s Research Innovation Fund and its priority initiatives in 2023, allowing donors the opportunity to double the impact of their research investment.

Founded in 1962, THI performed the first successful heart transplant and total artificial heart implant in the United States. It has gone on to become one of the world's leading institutions for cardiovascular treatment and research.

------

This article originally ran on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.

Luxury transportation startup connects Houston with Austin and San Antonio

On The Road Again

Houston business and leisure travelers have a luxe new way to hop between Texas cities. Transportation startup Shutto has launched luxury van service connecting San Antonio, Austin, and Houston, offering travelers a comfortable alternative to flying or long-haul rideshare.

Bookings are now available Monday through Saturday with departure times in the morning and evening. One-way fares range from $47-$87, putting Shutto in a similar lane to Dallas-based Vonlane, which also offers routes from Houston to Austin and San Antonio.

Shutto enters the market at a time when highway congestion is a hotter topic than ever. With high-speed rail still years in the future, its model aims to provide fast, predictable service at commuter prices.

The startup touts an on-time departure guarantee and a relaxed, intimate ride. Only 12 passengers fit inside each Mercedes Sprinter van, equipped with Wi-Fi and leather seating. And each route includes a pit stop at roadside favorite Buc-ee's.

In announcing the launch, founder and CEO Alberto Salcedo called the company a new category in Texas mobility.

“We are bringing true disruptive mobility to Texas: faster and more convenient than flying (no security lines, no delays), more comfortable and exclusive than the bus or train, and up to 70 percent cheaper than private transfers or Uber Black,” Salcedo said in a release.

“Whether you’re commuting for business, visiting family, exploring Texas wineries, or doing a taco tour in San Antonio, Shutto makes traveling between these cities as easy and affordable as riding inside the city."

Beyond the scheduled routes, Shutto offers private, customizable trips anywhere in the country, a service it expects will appeal to corporate retreat planners, party planners, and tourists alike.

In Houston, the service picks up and drops off near the Galleria at the Foam Coffee & Kitchen parking lot, 5819 Richmond Ave.. In San Antonio, it is located at La Panadería Bakery’s parking lot at 8305 Broadway. In Austin, the location is the Pershing East Café parking lot at 2501 E. Fifth St.

---

This article originally appeared on CultureMap.com.

Houston-area lab grows with focus on mobile diagnostics and predictive medicine

mobile medicine

When it comes to healthcare, access can be a matter of life and death. And for patients in skilled nursing facilities, assisted living or even their own homes, the ability to get timely diagnostic testing is not just a convenience, it’s a necessity.

That’s the problem Principle Health Systems (PHS) set out to solve.

Founded in 2016 in Clear Lake, Texas, PHS began as a conventional laboratory but quickly pivoted to mobile diagnostics, offering everything from core blood work and genetic testing to advanced imaging like ultrasounds, echocardiograms, and X-rays.

“We were approached by a group in a local skilled nursing facility to provide services, and we determined pretty quickly there was a massive need in this area,” says James Dieter, founder, chairman and CEO of PHS. “Turnaround time is imperative. These facilities have an incredibly sick population, and of course, they lack mobility to get the care that they need.”

What makes PHS unique is not only what they do, but where they do it. While they operate one of the largest labs serving skilled nursing facilities in the state, their mobile teams go wherever patients are, whether that’s a nursing home, a private residence or even a correctional facility.

Diagnostics, Dieter says, are at the heart of medical decision-making.

“Seventy to 80 percent of all medical decisions are made from diagnostic results in lab and imaging,” he says. “The diagnostic drives the doctor’s or the provider’s next move. When we recognized a massive slowdown in lab results, we had to innovate to do it faster.”

Innovation at PHS isn’t just about speed; it’s about accessibility and precision.

Chris Light, COO, explains: “For stat testing, we use bedside point-of-care instruments. Our phlebotomists take those into the facilities, test at the bedside, and get results within minutes, rather than waiting days for results to come back from a core lab.”

Scaling a mobile operation across multiple states isn’t simple, but PHS has expanded into nine states, including Texas, Oklahoma, Kansas, Missouri and Arizona. Their model relies on licensed mobile phlebotomists, X-ray technologists and sonographers, all trained to provide high-level care outside traditional hospital settings.

The financial impact for patients is significant. Instead of ambulance rides and ER visits costing thousands, PHS services often cost just a fraction, sometimes only tens or hundreds of dollars.

“Traditionally, without mobile diagnostics, the patient would be loaded into a transportation vehicle, typically an ambulance, and taken to a hospital,” Dieter says. “Our approach is a fraction of the cost but brings care directly to the patients.”

The company has also embraced predictive and personalized medicine, offering genetic tests that guide medication decisions and laboratory tests that predict cognitive decline from conditions like Alzheimer's and Parkinson’s.

“We actively look for complementary services to improve patient outcomes,” Dieter says. “Precision medicine and predictive testing have been a great value-add for our providers.”

Looking to the future, PHS sees mobile healthcare as part of a larger trend toward home-based care.

“There’s an aging population that still lives at home with caretakers,” Dieter explains. “We go into the home every day, whether it’s an apartment, a standalone home, or assisted living. The goal is to meet patients where they are and reduce the need for hospitalization.”

Light highlighted another layer of innovation: predictive guidance.

“We host a lot of data, and labs and imaging drive most treatment decisions,” Light says. “We’re exploring how to deploy diagnostics immediately based on results, eliminating hours of delay and keeping patients healthier longer.”

Ultimately, innovation at PHS isn’t just about technology; it’s about equity.

“There’s an 11-year life expectancy gap between major metro areas and rural Texas,” Dieter says. “Our innovation has been leveling the field, so everyone has access to high-quality diagnostics and care, regardless of where they live.”