CellChorus announced that the company, along with The University of Houston, has been awarded up to $2.5 million in funding. Photo via Getty Images

You could say that the booming success of Houston biotech company CellChorus owes very much to auspicious TIMING. Those six letters stand for Time-lapse Imaging Microscopy In Nanowell Grids, a platform for dynamic single-cell analysis.

This week, CellChorus announced that the company, along with The University of Houston, has been awarded up to $2.5 million in funding from the National Center for Advancing Translational Sciences (NCATS) at the National Institute of Health. A $350,000 Phase I grant is already underway. Once predetermined milestones are achieved, this will lead to a two-year $2.1 million Phase II grant.

The TIMING platform was created by UH Single Cell Lab researchers Navin Varadarajan and Badri Roysam. TIMING generates high-throughput in-vitro assays that quantitatively profile interactions between cells on a large scale, particularly what happens when immune cells confront target cells. This has been especially useful in the realm of immuno-oncology, where it has demonstrated its power in designing novel therapies, selecting lead candidates for clinical trials and evaluating the potency of manufactured cells.

“By combining AI, microscale manufacturing and advanced microscopy, the TIMING platform yields deep insight into cellular behaviors that directly impact human disease and new classes of therapeutics,” says Rebecca Berdeaux, chief scientific officer at CellChorus. “The generous support of NCATS enables our development of computational tools that will ultimately integrate single-cell dynamic functional analysis of cell behavior with intracellular signaling events.”

Houston’s CellChorus Innovation Lab supports both the further development of TIMING and projects for early-access customers. Those customers include top-25 biopharmaceutical companies, venture-backed biotechnology companies, a leading comprehensive cancer center and a top pediatric hospital, says CEO Daniel Meyer.

CellChorus’s publications include papers written in collaboration with researchers from the Baylor College of Medicine, Houston Methodist, MD Anderson, Texas Children’s Hospital, the University of Texas and UTHealth in journals including Nature Cancer, Journal of Clinical Investigation and The Journal for ImmunoTherapy of Cancer.

The new Small Business Technology Transfer (STTR) award will specifically support the development of a scalable integrated software system conceived with the goal of analyzing cells that are not fluorescently labeled. This label-free analysis will be based on new AI and machine learning (ML) models trained on tens of millions of images of cells.

“This is an opportunity to leverage artificial intelligence methods for advancing the life sciences,” says Roysam. “We are especially excited about its applications to advancing cell-based immunotherapy to treat cancer and other diseases.”

The Houston-born-and-bred company couldn’t have a more appropriate home, says Meyer.

“Houston is a premier location for clinical care and the development of biotechnology and life sciences technologies. In particular, Houston has established itself as a leader in the development and delivery of immune cell-based therapies,” the CEO explains. “As a spin-out from the Single Cell Lab at the University of Houston, we benefit from working with world-class experts at local institutions.”

In May, the company received a similar $2.5 million SBIR grant from NCATS at the NIH. Also this summer, CellChorus's technology was featured in Nature Cancer.

The funds will support the clinical evaluation of a therapeutic antibody that targets acute lymphoblastic leukemia, one of the most common childhood cancers. Photo via Getty Images

Houston startup scores $12M grant to support clinical evaluation of cancer-fighting drug

fresh funding

Allterum Therapeutics, a Houston biopharmaceutical company, has been awarded a $12 million product development grant from the Cancer Prevention and Research Institute of Texas (CPRIT).

The funds will support the clinical evaluation of a therapeutic antibody that targets acute lymphoblastic leukemia (ALL), one of the most common childhood cancers.

However, CEO and President Atul Varadhachary, who's also the managing director of Fannin Innovation, tells InnovationMap, “Our mission has grown much beyond ALL.”

The antibody, called 4A10, was invented by Scott Durum PhD and his team at the National Cancer Institute (NCI). Licensed exclusively by Allterum, a company launched by Fannin, 4A10 is a novel immunotherapy that utilizes a patient’s own immune system to locate and kill cancer cells.

Varadhachary explained that while about 80 percent of patients afflicted with ALL have the B-cell version, the other 20 percent suffer from T-cell ALL.

“Because the TLL population is so small, there are really no approved, effective drugs for it. The last drug that was approved was 18 or 19 years ago,” the CEO-scientist said. 4A10 addresses this unmet need, but also goes beyond it.

Because 4A10 targets CD127, also known as the interleukin-7 receptor, it could be useful in the treatment of myriad cancers. In fact, the receptor is expressed not just in hematological cancers like ALL, but also solid tumors like breast, lung, and colorectal cancers. There’s also “robust data,” according to Varadhachary for the antibody’s success against B-cell ALL, as well as many other cancers.

“Now what we're doing in parallel with doing the development for ALL is that we're continuing to do additional preclinical work in these other indications, and then at some point, we will raise a series A financing that will allow us to expand markets into things which are much more commercially attractive,” Varadhachary explains.

Why did they go for the less commercially viable application first? As Varadhachary put it, “The Fannin model is to allow us to go after areas which are major unmet medical needs, even if they are not necessarily as attractive on a commercial basis.”

But betting on a less common malady could have a bigger payoff than the Allterum team originally expected.

Before the new CPRIT grant, Allterum’s funding included a previous seed grant from CPRIT of $3 million. Other funds included an SBIR grant from NCI, as well as another NCI program called NExT, which deals specifically with experimental therapies.

“To get an antibody from research into clinical testing takes about $10 million,” Varadhachary says. “It's an expensive proposition.”

With this, and other nontraditional financing, the company was able to take what Varadhachary called “a huge unmet medical need but a really tiny commercial market” and potentially help combat a raft of other childhood cancers.

“That's our vision. It's not economically hugely attractive, but we think it's important,” says Varadhachary.

Atul Varadhachary is the managing director of Fannin Innovation. Photo via LinkedIn

“This breakthrough technology has the potential to reshape the landscape of disease treatment and the future of research and development in the field of cell-based therapies." Photo via Getty Images

Rice lab cooks up breakthrough 'living pharmacy' research for potential cell therapy treatment

biotech innovation

Rice University’s Biotech Launchpad has created an electrocatalytic on-site oxygenator, or ecO2, that produces oxygen intended to keeps cells alive. The device works inside an implantable “living pharmacy,” which the Rice Biotech Launch Pad team believes will one day be able to administer and regulate therapeutics within a patient’s body.

Last week, Rice announced a peer-reviewed publication in Nature Communications detailing the development of the novel rechargeable device. The study is entitled “Electrocatalytic on-site oxygenation for transplanted cell-based-therapies.”

How will doctors use the “living pharmacy?” The cell-based therapies implanted could treat conditions that include endocrine disorders, autoimmune syndromes, cancers and neurological degeneration. One major challenge standing in the way of bringing the technology beyond the theoretical has been ensuring the survival of cells for extended periods, which is necessary to create effective treatments. Oxygenation of the cells is an important component to keeping them alive and healthy and the longer they remain so, the longer the therapeutics will be helpful.

Other treatments to deliver oxygen to cells are ungainly and more limited in terms of oxygen production and regulation. According to Omid Veiseh, associate professor of bioengineering and faculty director of the Rice Biotech Launch Pad, oxygen generation is achieved with the ecO2 through water splitting that is precisely regulated using a battery-powered, wirelessly controlled electronic system. New versions will have wireless charging, which means it could last a patient’s entire lifetime.

“Cell-based therapies could be used for replacing damaged tissues, for drug delivery or augmenting the body’s own healing mechanisms, thus opening opportunities in wound healing and treatments for obesity, diabetes and cancer, for example. Generating oxygen on site is critical for many of these ‘biohybrid’ cell therapies: We need many cells to have sufficient production of therapeutics from those cells, thus there is a high metabolic demand. Our approach would integrate the ecO2 device to generate oxygen from the water itself,” says Jonathan Rivnay of Northwestern University, who co-led the study with Tzahi Cohen-Karni of Carnegie Mellon University (CMU).

The study’s co-first authors are Northwestern’s Abhijith Surendran and CMU’s Inkyu Lee.

Northwestern leads the collaboration with Rice to produce therapeutics onsite within the device. The research supports a Defense Advanced Research Projects Agency (DARPA) cooperative agreement worth up to $33 million to develop the implantable “living pharmacy” to control the human body’s sleep and wake cycles.

“This breakthrough technology has the potential to reshape the landscape of disease treatment and the future of research and development in the field of cell-based therapies. We are working toward advancing this technology into the clinic to bring it one step closer to those in need,” says Veiseh.

A Houston health care company received the green light from the FDA to advance a treatment that's targeting a deadly cancer. Photo via Getty Images

Houston immunotherapy company achieves FDA designation for cancer-fighting vaccine

got the green light

The FDA has granted a Houston-based company a Fast Track designation.

Diakonos Oncology Corp. is a clinical-stage immuno-oncology company that has developed a unique dendritic cell vaccine, DOC1021. The vaccine targets glioblastoma multiforme (GBM), the most common and most lethal malignant brain tumor in adults. The aggressive tumors come with a life expectancy of about 15 months following diagnosis. About 7 percent of those diagnosed survive five years, while the 10-year outlook only sees a one-percent survival rate.

“The FDA’s decision acknowledges the potential of this new treatment approach for a very challenging disease,” Diakonos CEO Mike Wicks says in a press release. “Our protocol represents a first for cancer immunotherapy and could be viable for many types of cancers beyond GBM.”

FDA Fast Track designations are intended to expedite the haste with which drugs with early clinical promise are reviewed, likely taking them to market faster.

DOC1021 uses the body’s natural anti-viral immune response to fight GBM. The vaccine mimics viral infection with the patient’s cancer markers. Essentially, DOC1021 uses the body’s own natural ability to detect and eliminate infected cells.

The technology uses dendritic cells, white blood cells that are able to perceive threats, to its advantage. The unique cancer markers are loaded both internally and externally into the immune cells, just as they would simultaneously occur in a viral infection. The individualized treatment is administered through three precise injections that target deep cervical lymph node chains. By dosing this way, the immune responses are directed straight to the central nervous system.

The results have spoken for themselves: All of the patients who have tried the treatment have exceeded survival expectations. And just as importantly, DOC1021 appears to be extremely safe. No serious adverse effects have been reported.

“Because Phase I clinical trials are generally not statistically powered to demonstrate efficacy, detection of a statistically significant efficacy signal is very promising,” says William Decker, associate professor of immunology at Baylor College of Medicine and inventor of the DOC1021 technology.

The Phase 1 open-label trial of DOC1021 (NCT04552886) is currently taking place at both the University of Texas Health Science Center in Houston and at the MD Anderson Cancer Center at Cooper University Health Care in Camden, NJ. The trial is expected to complete this year.

New facility will accelerate investigational treatments in cancer, heart disease, neurological disorders and more. Photo courtesy of Houston Methodist

Houston Methodist opens new cellular therapeutics center

new to hou

Houston Methodist recently opened a new 5,000-square-foot lab that will focus on developing and producing lifesaving treatments through cell therapy, the hospital announced last week.

Named the Ann Kimball & John W. Johnson Center for Cellular Therapeutics after long-time supporters of the hospital, the lab is located in the Houston Methodist Outpatient Center in the Texas Medical Center. The space includes 1710 square feet of cleanroom space, a dedicated quality control laboratory, six production rooms, support spaces and more to help develop new cell therapies and investigational therapeutics.

The combination of the control laboratory and production rooms onsite are anticipated to help the hospital treat patients safely and more efficiently, according to the statement.

Work at the JCCT is slated to benefit medical research throughout Houston Methodist in the fields of cancer, cardiovascular, neurology, organ transplantation, orthopedics and gastroenterology treatment.

The new center is named for Ann Kimball and John W. Johnson, who contributed a gift that will go toward establishing the facility. Photo courtesy of Houston Methodist

According to a statement from the hospital, cell therapy is "one of the most promising treatment options available," with applications in treatment for cancer, heart disease, and neurological diseases like ALS, Alzheimer’s and Parkinson’s. The therapy requires that a patient is implanted with live cells provided by a donor or the patient themselves. These cells can help repair or rejuvenate damaged tissue or cells.

“Many diseases have limited or ineffective therapies, so there is a tremendous need and opportunity to bring transformative and restorative new treatments to patients through cell therapy,” distinguished neurologist Dr Stanley Appel, who will lead the center, said the statement. “Having a cellular therapy laboratory on-site at Houston Methodist has always been a part of our vision. The Johnson family’s generosity and support of this vision will give hope to countless patients battling neurodegenerative diseases and more.”

The Johnsons' gift also created a matching fund that supports cell therapy projects in all specialties at Houston Methodist. At press time, the fund had helped attract 51 donors, including 69-year-old Jack McClanahan, who suffers from ALS and was the first to donate to the center.

"I volunteered for this because I want a younger man or woman with children to have a chance – this is a devastating disease,” McClanahan said in the statement. “If there’s any hope to help others, I just want to be part of it.”

Houston Methodist also announced last month that it will break ground on a $650 million Cypress "smart" hospital this spring. The hospital is slated to incorporate artificial intelligence, big data, and Alexa- and Siri-like voice technology into its treatment plans and design.

A Houston biotech company has raised $38.1 million. Photo by Dwight C. Andrews/Greater Houston Convention and Visitors Bureau

Houston-based cancer and disease bio-venture launches after $38.1M series A

money moves

Sporos Bioventures LLC launched this month after closing a $38.1 million round of series A financing.

The Houston-based biotech company aims to accelerate the development of breakthrough therapies for cancer and immune diseases by sharing resources, capital, access to clinical trial infrastructure, and talent from within its knowledgeable team of biotech executives, entrepreneurs, academic scholars, and investors. The company was launched with four entities: Tvardi Therapeutics, Asylia Therapeutics, Nirogy Therapeutics, and Stellanova Therapeutics.

The most advanced of the four entities, Tvardi, is currently in Phase 1 clinical trial to evaluate it's STAT3 oral inhibitor. It was named a "most promising" life sciences company at the 2020 Texas Life Science Forum, hosted by BioHouston and the Rice Alliance in December. The remaining entities are in the development stages and are focused on cancer, autoimmune disease, fibrosis, and tumor growth, among other conditions.

"Sporos was founded to accelerate the development of new medicines by addressing inefficiencies and risk in the establishment of new biotech companies," Peter Feinberg, Sporos co-founder, said in a statement. "By leveraging our extensive network, including the Texas Medical Center, we first identify transformative scientific opportunities and then deploy our top-tier talent, funding, and operational support to drive these insights into a growing pipeline of first-in-class treatment options."

In conjunction with the launch, Sporos named Michael Wyzga as the company's founding CFO. Wyzga was previously CFO at Genzyme for 12 years and has held various senior-level positions in the industry.

"By strategically deploying valuable resources to young companies that would not typically be supported by top-tier seasoned talent and infrastructure, we believe that we can efficiently bring a diverse set of therapies through clinical development," Wyzga said in a statement. "I am thrilled to join a team with decades of scientific and operational expertise and look forward to guiding our strategic and financial growth."

Wyzga joins a team of seasoned leaders in the biotech and cancer research fields, including Dr. Ronald DePinho, professor of Cancer Biology and past president of MD Anderson, who will serve as the chair of Sporos' Strategic Advisory Council. Jeno Gyuris, a biotech executive in oncology drug discovery and development with more than 25 years of experience, will serve as chief science officer. And Alex Cranberg, an experienced active early-stage biotech investor, serves as director.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

World's largest student startup competition names teams for 2025 Houston event

ready, set, pitch

The Rice Alliance for Technology and Entrepreneurship has announced the 42 student-led teams worldwide that will compete in the 25th annual Rice Business Plan Competition this spring.

The highly competitive event, known as one of the world’s largest and richest intercollegiate student startup challenges, will take place April 10–12 at Houston's The Ion. Teams in this year's competition represent 34 universities from four countries, including one team from Rice.

Graduate student-led teams from colleges or universities around the world will present their plans before more than 300 angel, venture capital, and corporate investors to compete for more than $1 million in prizes. Last year, top teams were awarded $1.5 million in investment and cash prizes.

The 2025 invitees include:

  • 3rd-i, University of Miami
  • AG3 Labs, Michigan State University
  • Arcticedge Technologies, University of Waterloo
  • Ark Health, University of Chicago
  • Automatic AI, University of Mississippi and University of New Orleans
  • Bobica Bars, Rowan University
  • Carbon Salary, Washington University in St. Louis
  • Carmine Minerals, California State University, San Bernardino
  • Celal-Mex, Monterrey Institute of Technology and Higher Education
  • CELLECT Laboratories, University of Waterloo
  • ECHO Solutions, University of Houston
  • EDUrain, University of Missouri-St. Louis
  • Eutrobac, University of California, Santa Cruz
  • FarmSmart.ai, Louisiana State University
  • Fetal Therapy Technologies, Johns Hopkins University
  • GreenLIB Materials, University of Ottawa
  • Humimic Biosystems, University of Arkansas
  • HydroHaul, Harvard University
  • Intero Biosystems, University of Michigan
  • Interplay, University of Missouri-Kansas City
  • MabLab, Harvard University
  • Microvitality, Tufts University
  • Mito Robotics, Carnegie Mellon University
  • Motmot, Michigan State University
  • Mud Rat, University of Connecticut
  • Nanoborne, University of Texas at Austin
  • NerView Surgical, McMaster University
  • NeuroFore, Washington University in St. Louis
  • Novus, Stanford University
  • OAQ, University of Toronto
  • Parthian Baattery Solutions, Columbia University
  • Pattern Materials, Rice University
  • Photon Queue, University of Illinois, Urbana-Champaign
  • re.solution, RWTH Aachen University
  • Rise Media, Yale University
  • Rivulet, University of Cambridge and Dartmouth College
  • Sabana, Carnegie Mellon University
  • SearchOwl, Case Western Reserve University
  • Six Carbons, Indiana University
  • Songscription, Stanford University
  • Watermarked.ai, University of Illinois, Urbana-Champaign
  • Xatoms, University of Toronto

This year's group joins more than 868 RBPC alums that have raised more than $6.1 billion in capital with 59 successful exits, according to the Rice Alliance.

Last year, Harvard's MesaQuantum, which was developing accurate and precise chip-scale clocks, took home the biggest sum of $335,000. While not named as a finalist, the team secured the most funding across a few prizes.

Protein Pints, a high-protein, low-sugar ice cream product from Michigan State University, won first place and the $150,000 GOOSE Capital Investment Grand Prize, as well as other prizes, bringing its total to $251,000.

Tesla recalling more than 375,000 vehicles due to power steering issue

Tesla Talk

Tesla is recalling more than 375,000 vehicles due to a power steering issue.

The recall is for certain 2023 Model 3 and Model Y vehicles operating software prior to 2023.38.4, according to the National Highway Traffic Safety Administration.

The printed circuit board for the electronic power steering assist may become overstressed, causing a loss of power steering assist when the vehicle reaches a stop and then accelerates again, the agency said.

The loss of power could required more effort to control the car by drivers, particularly at low speeds, increasing the risk of a crash.

Tesla isn't aware of any crashes, injuries, or deaths related to the condition.

The electric vehicle maker headed by Elon Musk has released a free software update to address the issue.

Letters are expected to be sent to vehicle owners on March 25. Owners may contact Tesla customer service at 1-877-798-3752 or the NHTSA at 1-888-327-4236.

Houston space tech companies land $25 million from Texas commission

Out Of This World

Two Houston aerospace companies have collectively received $25 million in grants from the Texas Space Commission.

Starlab Space picked up a $15 million grant, and Intuitive Machines gained a $10 million grant, according to a Space Commission news release.

Starlab Space says the money will help it develop the Systems Integration Lab in Webster, which will feature two components — the main lab and a software verification facility. The integration lab will aid creation of Starlab’s commercial space station.

“To ensure the success of our future space missions, we are starting with state-of-the-art testing facilities that will include the closest approximation to the flight environment as possible and allow us to verify requirements and validate the design of the Starlab space station,” Starlab CEO Tim Kopra said in a news release.

Starlab’s grant comes on top of a $217.5 million award from NASA to help eventually transition activity from the soon-to-be-retired International Space Station to new commercial destinations.

Intuitive Machines is a space exploration, infrastructure and services company. Among its projects are a lunar lander designed to land on the moon and a lunar rover designed for astronauts to travel on the moon’s surface.

The grants come from the Space Commission’s Space Exploration and Aeronautics Research Fund, which recently awarded $47.7 million to Texas companies.

Other recipients were:

  • Cedar Park-based Firefly Aerospace, which received $8.2 million
  • Brownsville-based Space Exploration Technologies (SpaceX), which received $7.5 million
  • Van Horn-based Blue Origin, which received $7 million

Gwen Griffin, chair of the commission, says the grants “will support Texas companies as we grow commercial, military, and civil aerospace activity across the state.”

State lawmakers established the commission in 2023, along with the Texas Aerospace Research & Space Economy Consortium, to bolster the state’s space industry.