This year, seven of the 10 most-promising life science companies are based in Houston. Photo courtesy of Rice Alliance

Rice University played host this week to the 12th annual Texas Life Science Forum, where life science leaders and startup founders could network, learn and present pitches on their solutions to a wide array of health-related issues.

Hosted by Rice Alliance for Technology and Entrepreneurship and BioHouston on November 7, the event brought together more than 600 attendees for a series of keynote speakers and panels. This year, 45 early-stage therapeutic, diagnostic, medical device and digital health companies—many of which are based in Houston—also pitched their concepts.

Fort Worth-based AyuVis Research walked away from the event with the two top recognitions: The Michael E. DeBakey Memorial Life Science Award and the People's Choice Award. The company, which has developed a small molecule immunotherapy targeting bronchopulmonary dysplasia (BPD) in preterm neonates and other respiratory disorders. The company is raising a $20 million Series A round to support its clinical development and is slated to pitch at IGNITE Health’s Fire Pitch 2023 today, November 9, at the Ion.

Each year the Rice Alliance and BioHouston also name its 10 most promising life science companies, selected by investors—seven out of 10 of which are based in Houston. This year's selection included the following companies, in alphabetical order:

  • 7 Hills Pharma: This Houston-based clinical stage immunotherapy company has developed the concept of allosteric activation of integrins to facilitate cell adhesion and promote immune responses. The concept has uses in preventing infection and cancer, and increasing the effectiveness of oncology drugs and infectious disease vaccines.
  • Bairitone Health: This Houston-based company is building a scalable diagnostic system for sleep apnea anatomy utilizing home-use wearable, passive Sonar technology and AI techniques.
  • Diakonos Oncology: Also based in Houston, Diakonos' Dendritic Cell Vaccine was awarded the FDA’s Fast Track designation. The clinical-stage biotech company's immunotherapies have shown early successes for hard-to-reach, aggressive cancers like Glioblastoma Multiforme.
  • Mongoose Bio: With more than 20 years of research, Mongoose specializes in T cell-based therapies for diverse solid tumors TCR-based therapies in cancer patients. The Houston-based company has developed an immunopeptidome discovery platform for TCR-based therapies in cancer patients.
  • Nandi Life Sciences: Nandi is developing antibodies for Avastin-resistant ovarian cancer, with
  • further application in breast, colorectal and lung cancer. The company is based out of Texas Medical Center Innovation.
  • NKILT Therapeutics: This Houston-based company's seed-stage cell therapy has applications in solid tumors, such as colorectal cancer, ovarian cancer, clear cell renal carcinoma, endometrial
  • cancer and more. It is developing a novel and proprietary Chimeric ILT-Receptor.
  • NuVision Biotherapies: Based in the United Kingdom, NuVision has developed and proven a treatment for dry eye disease. It's known for its Omnigen and OmniLenz products and is raising a series A to scale, take the business to profitability and exit.
  • Panakeia Technologies: Also based in the UK, Panakeia has developed an AI-based software that can provide multi-omic biomarkers in minutes. Currently this process takes days or weeks. It's RuO platform can identify 4,500 known multi-omics cancer markers.
  • Taurus Vascular: A recent spin-out of the Texas Medical Center Innovation Biodesign program, Taurus is developing a novel, catheter-based solution for treating endoleaks, which can be related to aortic aneurysms.
  • YAP Therapeutics: The only California-based company to make the cut, this preclinical-stage biotech develops genetic medicines that leverage the company’s tissue renewal and regeneration platform to reverse and cure severe diseases, including heart failure, pulmonary diseases, retinal degeneration and hearing loss.

Last year, Bairitone Health took home the DeBakey and People's Choice awards.

InformAI has three AI-based products geared at improving health care. Photo via Getty Images

Fresh off grant, Houston health tech company's AI aims to revolutionize diagnostics, care

data-driven

In Houston, we’re lucky to have top-tier doctors in the Texas Medical Center, ready to treat us with the newest technology. But what about our family members who have to rely on rural hospitals? Thanks to one Houston company, doctors in smaller community hospitals may soon have new tools at their disposal that could improve outcomes for patients around the world.

Since InnovationMap last caught up with Jim Havelka, CEO of InformAI, two years ago, that hope has come far closer to a reality. InformAI is a VC-backed digital health company. Part of JLABS @ TMC innovation facilities, the company uses artificial intelligence to develop both diagnostic tools and clinical outcome predictors. And two of the company’s products will undergo FDA regulatory testing this year.

SinusAI, which helps to detect sinus-related diseases in CT scans, received its CE Mark — the European equivalent of FDA approval — last year and is being sold across the Atlantic today, says Havelka. He adds that in the United States alone, there are roughly 700,000 sinus surgeries that the product is positioned to support.

Another product, RadOnc-AI, is designed to help doctors prescribe radiation dose plans for head and neck cancers.

“Ideally the perfect plan would be to provide radiation to the tumor and nothing around it,” says Havelka. “We’ve built a product, RadOnc-AI, which autogenerates the dose treatment plan based on medical images of that patient.”

It can be an hours-long process for doctors to figure out the path and dose of radiation themselves, but the new product “can build that initial pass in about five minutes,” Havelka says.

That in itself is an exciting development, but because this technology was developed using the expertise of some of the world’s top oncologists, “the first pass plan is in line with what [patients would] get at tier-one institutions,” explains Havelka. This creates “tremendous equity” among patients who can afford to travel to major facilities and those that can’t.

To that end, RadOnc-AI was recently awarded a $1.55 million grant from the Cancer Prevention and Research Institute of Texas, or CPRIT, a state agency that funds cancer research. The Radiological Society of North America announced late last year that InformAI was named an Aunt Minnie Best of Radiology Finalist.

“It’s quite prestigious for our company,” says Havelka. Other recent laurels include InformAI being named one of the 10 most promising companies by the Texas Life Science Forum in November.

And InformAI is only gaining steam. A third product is earlier in its stage of development. TransplantAI will optimize donor organ and patient recipient matches.

“A lot of organs are harvested and discarded,” Havelka says.

His AI product has been trained on a million donor transplants to help determine who is the best recipient for an organ. It even takes urgency into account, based on a patient’s expected mortality within 90 days. The product is currently a fully functional prototype and will soon move through its initial regulatory clearances.

The company — currently backed by three VC funds, including DEFTA Partners, Delight Ventures, and Joyance Partners — is planning to do another seed round in Q2 of 2023.

“We’ve been able to get recognized for digital health products that can be taken to market globally,” says Havelka.

But what he says he’s most excited about is the social impact of his products. With more money raised, InformAI will be able to speed up development of additional products, including expanding the cancers that the company will be targeting. And with that, more and more patients will one day be treated with the highest level of care.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH receives $2.6M gift to support opioid addiction research and treatment

drug research

The estate of Dr. William A. Gibson has granted the University of Houston a $2.6 million gift to support and expand its opioid addiction research, including the development of a fentanyl vaccine that could block the drug's ability to enter the brain.

The gift builds upon a previous donation from the Gibson estate that honored the scientist’s late son Michael, who died from drug addiction in 2019. The original donation established the Michael C. Gibson Addiction Research Program in UH's department of psychology. The latest donation will establish the Michael Conner Gibson Endowed Professorship in Psychology and the Michael Conner Gibson Research Endowment in the College of Liberal Arts and Social Sciences.

“This incredibly generous gift will accelerate UH’s addiction research program and advance new approaches to treatment,” Daniel O’Connor, dean of the College of Liberal Arts and Social Sciences, said in a news release.

The Michael C. Gibson Addiction Research Program is led by UH professor of psychology Therese Kosten and Colin Haile, a founding member of the UH Drug Discovery Institute. Currently, the program produces high-profile drug research, including the fentanyl vaccine.

According to UH, the vaccine can eliminate the drug’s “high” and could have major implications for the nation’s opioid epidemic, as research reveals Opioid Use Disorder (OUD) is treatable.

The endowed professorship is combined with a one-to-one match from the Aspire Fund Challenge, a $50 million grant program established in 2019 by an anonymous donor. UH says the program has helped the university increase its number of endowed chairs and professorships, including this new position in the department of psychology.

“Our future discoveries will forever honor the memory of Michael Conner Gibson and the Gibson family,” O’Connor added in the release. “And I expect that the work supported by these endowments will eventually save many thousands of lives.”

CenterPoint and partners launch AI initiative to stabilize the power grid

AI infrastructure

Houston-based utility company CenterPoint Energy is one of the founding partners of a new AI infrastructure initiative called Chain Reaction.

Software companies NVIDIA and Palantir have joined CenterPoint in forming Chain Reaction, which is aimed at speeding up AI buildouts for energy producers and distributors, data centers and infrastructure builders. Among the initiative’s goals are to stabilize and expand the power grid to meet growing demand from data centers, and to design and develop large data centers that can support AI activity.

“The energy infrastructure buildout is the industrial challenge of our generation,” Tristan Gruska, Palantir’s head of energy and infrastructure, says in a news release. “But the software that the sector relies on was not built for this moment. We have spent years quietly deploying systems that keep power plants running and grids reliable. Chain Reaction is the result of building from the ground up for the demands of AI.”

CenterPoint serves about 7 million customers in Texas, Indiana, Minnesota and Ohio. After Hurricane Beryl struck Houston in July 2024, CenterPoint committed to building a resilient power grid for the region and chose Palantir as its “software backbone.”

“Never before have technology and energy been so intertwined in determining the future course of American innovation, commercial growth, and economic security,” Jason Wells, chairman, president and CEO of CenterPoint, added in the release.

In November, the utility company got the go-ahead from the Public Utility Commission of Texas for a $2.9 billion upgrade of its Houston-area power grid. CenterPoint serves 2.9 million customers in a 12-county territory anchored by Houston.

A month earlier, CenterPoint launched a $65 billion, 10-year capital improvement plan to support rising demand for power across all of its service territories.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.