Five cancer research teams have been selected to receive funds from a new initiative from the University of Texas. Photo via news.utexas.edu

In a renewed effort to move the needle on finding a cure for cancer, the University of Texas system has launched a new collaboration in oncological data and computational science across three programs.

Houston-based University of Texas MD Anderson Cancer Center has teamed up with two UT Austin schools — the Oden Institute for Computational Engineering and Sciences and the Texas Advanced Computing Center. The collaboration was announced this summer to tap into mathematical modeling and advanced computing along with oncology expertise to inspire new methods of cancer treatment.

"Integrating and learning from the massive amount of largely unstructured data in cancer care and research is a formidable challenge," says David Jaffray, Ph.D., chief technology and digital officer at MD Anderson, in a news release. "We need to bring together teams that can place quantitative data in context and inform state-of-the-art computational models of the disease and accelerate progress in our mission to end cancer."

Now, the first five projects to be funded under this new initiative have been announced.

  • Angela Jarrett of the Oden Institute and Maia Rauch of MD Anderson will develop a patient-specific mathematical model for forecasting treatment response and designing optimal therapy strategies for patients with triple-negative breast cancer.
  • Caroline Chung of MD Anderson and David Hormuth of the Oden Institute are using computational models of the underlying biology to fundamentally change how radiotherapy and chemotherapy are personalized to improve survival rates for brain cancer patients.
  • Ken-Pin Hwang of MD Anderson and Jon Tamir of UT Austin's Department of Electrical and Computer Engineering and the Oden Institute will use mathematical modeling and massively parallel distributed computing to make prostate MR imaging faster and more accurate to reduce the incidence of unnecessary or inaccurate biopsies.
  • Xiaodong Zhang of MD Anderson and Hang Liu of TACC will advance both the planning and delivery of proton therapy via a platform that combines mathematical algorithms and high-performance computing to further personalize these already highly tailored treatments.
  • Tinsley Oden and Prashant Jha of the Oden Institute and David Fuentes of MD Anderson will integrate a new mechanistic model of tumor growth with an advanced form of MRI to reveal underlying metabolic alterations in tumors and lead to new treatments for patients.

"These five research teams, made up of a cross section of expertise from all three stakeholders, represent the beginning of something truly special," says Jaffray in a release. "Our experts are advancing cancer research and care, and we are committed to working with our colleagues at the Oden Institute and TACC to bring together their computational expertise with our data and insights."

Later this month, the five teams will log on to a virtual retreat along with academic and government thought leaders to further collaborate and intertwine their research and expertise.

"Texas is globally recognized for its excellence in computing and in cancer research. This collaboration forges a new path to international leadership through the combination of its strengths in both," says Karen Willcox, director of the Oden Institute. "We are thrilled that leaders in government, industry and academia see the potential of this unique Texan partnership. We're looking forward to a virtual retreat on October 29 to continue to build upon this realization."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Big winners: 5 Houston companies that raised the most funding in 2024

year in review

Editor's note: As 2024 comes to a close, InnovationMap is looking back at the year's top stories in Houston innovation. When it came to the money raised in Houston, these five startups raised the most, according to reporting done by InnovationMap. Be sure to click on each story to read the full article.

Fervo Energy secures $600M in multiple rounds

The latest deal brings Fervo's total funding secured this year to around $600 million. Photo courtesy of Fervo

Fervo secured a lot of fresh funding this year to deliver on its 100x growth plans. Most recently, the company announced that it has raised $255 million in new funding and capital availability. A $135 million corporate equity round was led by Capricorn’s Technology Impact Fund II and a $120 million letter of credit and term loan facility was granted by Mercuria, an independent energy and commodity group that previously invested in the company. Read more about the round.

In February, Fervo secured $244 million in a financing round led by Devon Energy, and in September, the company received a $100 million bridge loan for the first phase of its ongoing project in Utah. This project, known as Project Cape, represents a 100x growth opportunity for Fervo, as Latimer explained to InnovationMap earlier this year. As of now, Project Cape is fully permitted up to 2 GW and will begin generating electricity in 2026, per the company.

Solugen scores $213.6M to support new facility

The new Solugen facility is expected to reduce annual carbon emissions by up to 18 million kilograms. Photo courtesy of Solugen

Houston-based Solugen secured financing from the U.S. Department of Energy's Loan Programs Office in June to support its mission of producing clean chemicals.

The LPO's $213.6 million loan guarantee will go toward the construction of the company's 500,000-square-foot Bioforge Marshall facility in Southwest Minnesota, which broke ground in April and will produce bio-based chemical products to be used in wastewater treatment, construction, agriculture, and the energy sector. According to Solugen, the facility is expected to reduce annual carbon emissions by up to 18 million kilograms.

"American manufacturing is at a turning point, and we are proud to have the opportunity to work with the DOE in bringing critical chemical production capabilities onshore to communities like Marshall," Gaurab Chakrabarti, CEO of Solugen, says in a news release. "By scaling cutting-edge technologies, we are meeting domestic demand for innovative solutions and setting global standards for sustainable biomanufacturing." Read more about the round.

Cart.com brings in $130M in financing, series C extension

Cart.com announced a $25 million series C extension round and $105 million in debt refinancing from investment manager BlackRock. Photo courtesy of Cart.com

While 2024 was less lucrative for Houston-based Cart.com when it comes to VC activity, the scaleup did pull in significant funding.

The company, which operates a multichannel commerce platform, secured $105 million in debt refinancing from investment manager BlackRock in July.

The debt refinancing follows a recent $25 million series C extension round, bringing Cart.com’s series C total to $85 million. The scaleup’s valuation now stands at $1.2 billion, making it one of the few $1 billion-plus “unicorns” in the Houston area. Read more about the round.

Procyrion closes $57.7M series E to fund journey to FDA approval, commercialization

Procyrion has announced the closing of its series E round of funding. Photo via Getty Images

Houston-born and bred medical device company, Procyrion, has completed its series E with a raise of $57.7 million, including the conversion of $10 million of interim financing.

Procyrion is the company behind Aortix, a pump designed to be placed in the descending thoracic aorta of heart failure patients, which has been shown to improve cardiac performance in seriously ill subjects. The money raised will allow the company to proceed with a the DRAIN-HF Study, a pivotal trial that will be used for eventual FDA approval and commercialization.

The Aortix is the brainchild of Houston cardiologist Reynolds Delgado. According to Procyrion’s CSO, Jace Heuring, Delgado, gained some of his experience with devices for the heart working with legendary Texas Heart Institute surgeon O.H. “Bud” Frazier. He filed his first patents related to the Aortix in 2005. Read more about the round.

Utility Global raises $53M series C investment

Utility Global’s technology enables reduction of greenhouse gas emissions along with generation of low-carbon fuels and chemicals. Photo courtesy of Utility Global

Houston-based Utility Global, a maker of decarbonization-focused gas production technology, has raised $53 million in an ongoing series C round.

Among the participants in the round are Canada’s Ontario Power Generation Pension Plan, the XCarb Innovation Fund operated by Luxembourg-based steel company ArcelorMittal, Houston-based investment firm Ara Partners, and Saudi Aramco’s investment arm.

Also, Utility Global and ArcelorMittal have agreed to develop at least one decarbonization facility at an ArcelorMittal steel plant. Read more about the round.

Houston scientists create first profile of Mars’ radiant energy budget, revealing climate insights on Earth

RESEARCH FINDINGS

Scientists at the University of Houston have found a new understanding of climate and weather on Mars.

The study, which was published in a new paper in AGU Advances and will be featured in AGU’s science magazine EOS, generated the first meridional profile of Mars’ radiant energy budget (REB). REB represents the balance or imbalance between absorbed solar energy and emitted thermal energy across latitudes. An energy surplus can lead to global warming, and a deficit results in global cooling, which helps provide insights to Earth's atmospheric processes too. The profile of Mars’ REB influences weather and climate patterns.

The study was led by Larry Guan, a graduate student in the Department of Physics at UH's College of Natural Sciences and Mathematics under the guidance of his advisors Professor Liming Li from the Department of Physics and Professor Xun Jiang from the Department of Earth and Atmospheric Sciences and other planetary scientists. UH graduate students Ellen Creecy and Xinyue Wang, renowned planetary scientists Germán Martínez, Ph.D. (Houston’s Lunar and Planetary Institute), Anthony Toigo, Ph.D. (Johns Hopkins University) and Mark Richardson, Ph.D. (Aeolis Research), and Prof. Agustín Sánchez-Lavega (Universidad del País, Vasco, Spain) and Prof. Yeon Joo Lee (Institute for Basic Science, South Korea) also assisted in the project.

The profile of Mars’ REB is based on long-term observations from orbiting spacecraft. It offers a detailed comparison of Mars’ REB to that of Earth, which has shown differences in the way each planet receives and radiates energy. Earth shows an energy surplus in the tropics and a deficit in the polar regions, while Mars exhibits opposite behavioral patterns.

The surplus is evident in Mars’ southern hemisphere during spring, which plays a role in driving the planet’s atmospheric circulation and triggering the most prominent feature of weather on the planet, global dust storms. The storms can envelop the entire planet, alter the distribution of energy, and provide a dynamic element that affects Mars’ weather patterns and climate.

The research team is currently examining long-term energy imbalances on Mars and how it influences the planet’s climate.

“The REB difference between the two planets is truly fascinating, so continued monitoring will deepen our understanding of Mars’ climate dynamics,” Li says in a news release.

The global-scale energy imbalance on Earth was recently discovered, and it contributes to global warming at a “magnitude comparable to that caused by increasing greenhouse gases,” according to the study. Mars has an environment that differs due to its thinner atmosphere and lack of anthropogenic effects.

“The work in establishing Mars’ first meridional radiant energy budget profile is noteworthy,” Guan adds. “Understanding Earth’s large-scale climate and atmospheric circulation relies heavily on REB profiles, so having one for Mars allows critical climatological comparisons and lays the groundwork for Martian meteorology.”

------

This article originally ran on EnergyCapital.

Houston startup secures $22.5M to innovate cell therapy to fight cancer

fresh funding

A promising cell therapy company has raised its latest funding round — to the tune of $22.5 million.

Indapta Therapeutics, which has a dual headquarters in Houston and Seattle, is a clinical stage biotechnology and next-generation cell therapy company focused on the treatment of cancer and autoimmune diseases. The company announced it has closed a $22.5 million round of new financing to accelerate the clinical development of its differentiated allogeneic Natural Killer cell therapy.

"This funding will enable us to generate significant additional data in our ongoing trial of IDP-023 in cancer as well as initial data from our first trial in autoimmune disease," Mark Frohlich, Indapta’s CEO, says in a news release.

Indapta has completed enrollment in the safety run-in portion of the Phase 1 clinical trial of IDP-023 in Non-Hodgkin’s Lymphoma and Multiple Myeloma, according to the company. The patients received up to three doses of IDP-023 without and with interleukin (IL)-2.

Completing the round were current investors RA Capital Management, Bayer's impact investment arm Leaps, Vertex Ventures HC, Pontifax, and the Myeloma Investment Fund, the venture philanthropy subsidiary of the Multiple Myeloma Research Foundation. Earlier in December, Indapta announced a collaboration with Sanofi to explore the combination of its allogeneic g-NK cell therapy IDP-023 with Sanofi’s CD38 that targets the monoclonal antibody, Sarclisa (isatuximab).

"Preliminary results of IDP-023 in cancer are encouraging and we look forward to initiating our Phase 1 trial for multiple sclerosis in Q1 2025,” Frohlich continues. “This financing, together with our recently announced collaboration with Sanofi, highlights the promise of our differentiated platform.”

Also in August, Indapta announced a FDA clearance of its IND of IDP-023 in combination with ocrelizumab in progressive MS.


Mark Frohlich is the CEO of the Houston- and Seattle-based company. Photo courtesy of Indapta Therapeutics