Spark Biomedical took home first place at the Texas A&M New Ventures Competition. Courtesy of Texas A&M

Earlier this month, 16 startups competed in the 2019 Texas A&M New Ventures Competition for more than $350,000 in cash and in-kind services — the largest pool of prizes in the contest's history.

Houston had a huge presence at TNVC this year. Several Houston startups competed in the technology- and science-focused pitch competition, and the top three prizes were claimed by Houstonians. Of the 13 health and life science companies that were named semifinalists, seven were related to the TMC Innovation Institute.

Here are the Houston companies that walked away from the TNVC with cash and/or prizes.

Spark Biomedical

Friendswood-based medical device company Spark Biomedical took home the top prize at TNVC, which came with a $50,000 check. Spark's technology uses a noninvasive neurostimulation treatment for opioid addiction recovery.

"I'm very humbled and grateful," says Daniel Powell, CEO of Spark, in a release. "This award means a lot because Texas A&M is my alma mater. Being back here is fantastic, and this win is a testament to the work we're doing and our dedication to making a difference with this product."

Spark also was recognized with the Southwest Pediatric Device Prize and the Aggie Angel Network Investment Prize. Recently, Spark announced a partnership with another Houston startup, Galen Data.

SurfEllent

Photo via surfellent.com

Coming in at No. 2 overall and receiving a $35,000 prize was Houston-based advanced coating company, SurfEllent. The company, which is based out of the University of Houston's Technology Park, has designed an anti-icing technology that can be used in any type of situation from de-icing cars to aeronautical applications.

SurfEllent was also recently recognized as one of the top three innovators at NASA's 2017 iTech forum, out of 130 entries across the US.

The company also walked away with the TEEX Product Development Center Prize.

Intelligent Implants

Photo by Cody Duty/TMC

Intelligent Implants called Houston home during the 2018 TMCx medical device cohort and still has a presence in town. The company, which created a, implantable wireless device that stimulates bone growth using electrical stimulation, claimed third prize and $25,000.

Last fall, following its success at TMCx, Intelligent Implants was named the "Most Promising Life Science Company" at the 2018 Texas Life Science Forum hosted by the Rice Alliance and BioHouston.

VenoStent

Photo via venostent.com

Another 2018 TMCx medical device cohort member competed at the TNVC and left with fresh funds. VenoStent took fifth place and a $10,000 prize. VenoStent has a device that allows a successful stent implementation on the first try, called the SelfWrap. The device is made from a shape-memory polymer that uses body heat to mold the stent into the vein-artery junction.

VenoStent, which has its headquarters in Nashville, Tennessee, also won the Ramey & Schwaller IP Legal Services Prize.

PolyVascular

Courtesy of TMC Innovation

Houston-based PolyVascular walked away a big winner of multiple prizes. The company, a member of TMCx's 2017 medical device cohort, creates polymeric transcatheter valves for children with congenital heart disease.

PolyVascular won the TNVC pitch competition, which came with a $5,000 prize. The startup also walked away with the Biotex Investment Prize, the Amerra Visualization Services Prize, and the GOOSE Society Investment Prize.

Ictero Medical

Ictero Medical, which operates out of JLABs at TMC, took home several prizes, including the Thomas | Horstemeyer IP Legal Services Prize, the TMC Accelerator Admission Prize, and the Engineering Vice Chancellor Innovation Prize — a new award that came with a $15,000 prize.

Ictero created the CholeSafe System — a minimally invasive device that treats gallstone disease patients in a procedure with "only minimal local anesthesia to defunctionalize the gallbladder without having to remove it," according to the website.

Sun Co. Tracking

Sun Co. Tracking was the other of the two startups to receive the new Engineering Vice Chancellor's Innovation Prize and its own $15,000 prize. The Houston-based company is developing shape memory alloy actuators for solar panels.

"This unique prize is intended to help the awardees access the world-class engineering capabilities at Texas A&M to obtain technical assistance toward solving their most challenging technical problems in product design, manufacturing or testing," says Dr. Balakrishna Haridas, TEES director for technology commercialization and entrepreneurship, in a release.

"These collaborations between the prize winners and Texas A&M Engineering will generate technical data to support on Small Business Innovation Research/grant proposal funding or private capital investments to the company."

GaitIQ

Photo via LinkedIn

GaitIQ is based in San Antonio, but is automatically accepted into TMCx's tenth cohort if they'd like, since the company won the TMC Investment Prize. The company, which created a primary care app that uses artificial intelligence and cloud-based technology, also won sixth place overall and $5,000.

GaitIQ also won the Ark Pharmacies, Inc. Regional Prize, the Hollinden Marketing and Strategists Services Prize, and the Schwegman Lundberg and Woessner IP Legal Services Prize.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Astros and Rockets launch new streaming service for Houston sports fans

Sports Talk

Houston sports fans now have a way to watch their favorite teams without a cable or satellite subscription. Launched December 3, the Space City Home Network’s SCHN+ service allows consumers to watch the Houston Astros and Houston Rockets via iOS, Apple TV, Android, Amazon Fire TV, or web browser.

A subscription to SCHN+ allows sports fans to watch all Astros and Rockets games, as well as behind-the-scenes features and other on-demand content. It’s priced at $19.99 per month or $199.99 annually (plus tax). People who watch Space City Network Network via their existing cable or satellite service will be able to access SCHN+ at no additional charge.

As the Houston Chronicle notes, the Astros and Rockets were the only MLB and NBA teams not to offer a direct-to-consumer streaming option.

“We’re thrilled to offer another great option to ensure fans have access to watch games, and the SCHN+ streaming app makes it easier than ever to cheer on the Rockets,” Rockets alternate governor Patrick Fertitta said in a statement.

“Providing fans with a convenient way to watch their favorite teams, along with our network’s award-winning programming, was an essential addition. This season feels special, and we’re committed to exploring new ways to elevate our broadcasts for Rockets fans to enjoy.”

Astros owner Jim Crane echoed Feritta’s comments, adding, “Providing fans options on how they view our games is important as we continue to grow the game – we want to make it accessible to as large an audience as possible. We are looking forward to the 2026 season and more Astros fans watching our players compete for another championship.”

SCHN+ is available to customers in Texas; Louisiana; Arkansas; Oklahoma; and the following counties in New Mexico: Dona Ana, Eddy, Lea, Chaves, Roosevelt, Curry, Quay, Union, and Debaca. Fans outside these areas will need to subscribe to the NBA and MLB out-of-market services.

---

This article originally appeared on CultureMap.com.

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.

Luxury transportation startup connects Houston with Austin and San Antonio

On The Road Again

Houston business and leisure travelers have a luxe new way to hop between Texas cities. Transportation startup Shutto has launched luxury van service connecting San Antonio, Austin, and Houston, offering travelers a comfortable alternative to flying or long-haul rideshare.

Bookings are now available Monday through Saturday with departure times in the morning and evening. One-way fares range from $47-$87, putting Shutto in a similar lane to Dallas-based Vonlane, which also offers routes from Houston to Austin and San Antonio.

Shutto enters the market at a time when highway congestion is a hotter topic than ever. With high-speed rail still years in the future, its model aims to provide fast, predictable service at commuter prices.

The startup touts an on-time departure guarantee and a relaxed, intimate ride. Only 12 passengers fit inside each Mercedes Sprinter van, equipped with Wi-Fi and leather seating. And each route includes a pit stop at roadside favorite Buc-ee's.

In announcing the launch, founder and CEO Alberto Salcedo called the company a new category in Texas mobility.

“We are bringing true disruptive mobility to Texas: faster and more convenient than flying (no security lines, no delays), more comfortable and exclusive than the bus or train, and up to 70 percent cheaper than private transfers or Uber Black,” Salcedo said in a release.

“Whether you’re commuting for business, visiting family, exploring Texas wineries, or doing a taco tour in San Antonio, Shutto makes traveling between these cities as easy and affordable as riding inside the city."

Beyond the scheduled routes, Shutto offers private, customizable trips anywhere in the country, a service it expects will appeal to corporate retreat planners, party planners, and tourists alike.

In Houston, the service picks up and drops off near the Galleria at the Foam Coffee & Kitchen parking lot, 5819 Richmond Ave.. In San Antonio, it is located at La Panadería Bakery’s parking lot at 8305 Broadway. In Austin, the location is the Pershing East Café parking lot at 2501 E. Fifth St.

---

This article originally appeared on CultureMap.com.