Here's what life science startups were named most promising at the recent Rice Alliance Texas Life Science Forum.. Getty Images

Houston hosted an annual meeting of the minds that included thoughtful discussions, presentations, panels, and startup pitches within the life science industry.

The Texas Life Science Forum, organized and hosted by the Rice Alliance and BioHouston, took place on November 6 at Rice University's Bioscience Research Collaborative. Throughout the day, over 50 life science startups pitched to the audience. At the end of the forum, 10 startups — most of which are based in Houston — were recognized as being the most promising.

Here's what life science startups you should be keeping an eye out for.

Abilitech Medical

abilitech

Photo via abilitechmedical.com

A St. Paul, Minnisota-based medical device company, Abilitech Medical develops assistive technology to Multiple sclerosis, Muscular Dystrophy, Parkinson's and stroke patients. The first product, Alibitech Assist, will be cleared by the FDA in 2020, with other devices to follow in 2022 and 2023.

AgilVax

agilvax

Photo via agilvax.com

Based in Albuquerque, New Mexico, AgilVax is a biopharmaceutical company that works with chemotherapy, checkpoint and KRAS inhibitors to fight various cancers. The company's AX09 is an immunotherapeutic that is headed for human clinical trials in 2020. Another product, M5, is a monoclonal antibody currently in preclinical trials.

Altoida

altoida

Photo via altoida.com

Altoida, based in Houston, has created a medical device that uses artificial intelligence and augmented reality to collect functional and cognitive data in patients to determine their risk Mild Cognitive Impairment from Alzheimer's Disease. The Altoida Neuro Motor Index has been cleared by the FDA and CE and detects cognitive decline with a 94 percent diagnostic accuracy six to 10 years ahead of the onset of symptoms.

ColubrisMX

Photo via Pexels

Houston-based ColubrisMX makes surgical robots specializing in minimally invasive and endoluminal surgeries. The company's team of engineers and surgeons works adjacent to the Texas Medical Center.

Cord Blood Plus

stem cell

Photo via Getty Images

Cord Blood Plus, based in Galveston, is working to commercialize its human umbilical cord blood stem cell technology. The company's primary mission is to use its research and treatment on breast cancer patients undergoing chemotherapy in order to prevent infections, speed up recovery, and shorten hospital stays.

CorInnova

CorInnova

Photo via CorInnova.com

Another Houston company, CorInnova is a medical device company that has developed a cardiac assist device to treat heart failure without many of the consequences from standard treatment. The device is able to self expand and gently compress the heart in sync with the heartbeat.

Mesogen

mesogen

Photo via Mesogen.com

Mesogen, which is based in The Woodlands, is in the business of using a patient's own cells to grow a human kidney for transplant. The tissue engineering technology allows for the creation of a kidney in less than a year with less risk of transplant rejection and a better quality of life over dialysis treatment.

Saranas

Courtesy of Saranas

Houston-based Saranas has created its Early Bird device to more quickly and more accurately detect bleeding in the human body. The company, which underwent successful clinical trials last year, recently received FDA clearance and launched the device in the United States.

Stream Biomedical

stream biomedical

Photo via streambiomedical.com

Stream Biomedical Inc. is tapping into a therapeutic protein that has proven to be neuroprotective and neuroreparative. The Houston company is aiming to apply the treatment in acute stroke cases and later for traumatic brain injury, Alzheimer's, and dementia cases.

VenoStent

Photo via venostent.com

Houston-based VenoStent has created a device that allows a successful stent implementation on the first try. VenoStent's SelfWrap is made from a shape-memory polymer that uses body heat to mold the stent into the vein-artery junction.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

​Planned UT Austin med center, anchored by MD Anderson, gets $100M gift​

med funding

The University of Texas at Austin’s planned multibillion-dollar medical center, which will include a hospital run by Houston’s University of Texas MD Anderson Cancer Center, just received a $100 million boost from a billionaire husband-and-wife duo.

Tench Coxe, a former venture capitalist who’s a major shareholder in chipmaking giant Nvidia, and Simone Coxe, co-founder and former CEO of the Blanc & Otus PR firm, contributed the $100 million—one of the largest gifts in UT history. The Coxes live in Austin.

“Great medical care changes lives,” says Simone Coxe, “and we want more people to have access to it.”

The University of Texas System announced the medical center project in 2023 and cited an estimated price tag of $2.5 billion. UT initially said the medical center would be built on the site of the Frank Erwin Center, a sports and entertainment venue on the UT Austin campus that was demolished in 2024. The 20-acre site, north of downtown and the state Capitol, is near Dell Seton Medical Center, UT Dell Medical School and UT Health Austin.

Now, UT officials are considering a bigger, still-unidentified site near the Domain mixed-use district in North Austin, although they haven’t ruled out the Erwin Center site. The Domain development is near St. David’s North Medical Center.

As originally planned, the medical center would house a cancer center built and operated by MD Anderson and a specialty hospital built and operated by UT Austin. Construction on the two hospitals is scheduled to start this year and be completed in 2030. According to a 2025 bid notice for contractors, each hospital is expected to encompass about 1.5 million square feet, meaning the medical center would span about 3 million square feet.

Features of the MD Anderson hospital will include:

  • Inpatient care
  • Outpatient clinics
  • Surgery suites
  • Radiation, chemotherapy, cell, and proton treatments
  • Diagnostic imaging
  • Clinical drug trials

UT says the new medical center will fuse the university’s academic and research capabilities with the medical and research capabilities of MD Anderson and Dell Medical School.

UT officials say priorities for spending the Coxes’ gift include:

  • Recruiting world-class medical professionals and scientists
  • Supporting construction
  • Investing in technology
  • Expanding community programs that promote healthy living and access to care

Tench says the opportunity to contribute to building an institution from the ground up helped prompt the donation. He and others say that thanks to MD Anderson’s participation, the medical center will bring world-renowned cancer care to the Austin area.

“We have a close friend who had to travel to Houston for care she should have been able to get here at home. … Supporting the vision for the UT medical center is exactly the opportunity Austin needed,” he says.

The rate of patients who leave the Austin area to seek care for serious medical issues runs as high as 25 percent, according to UT.

New Rice Brain Institute partners with TMC to award inaugural grants

brain trust

The recently founded Rice Brain Institute has named the first four projects to receive research awards through the Rice and TMC Neuro Collaboration Seed Grant Program.

The new grant program brings together Rice faculty with clinicians and scientists at The University of Texas Medical Branch, Baylor College of Medicine, UTHealth Houston and The University of Texas MD Anderson Cancer Center. The program will support pilot projects that address neurological disease, mental health and brain injury.

The first round of awards was selected from a competitive pool of 40 proposals, and will support projects that reflect Rice Brain Institute’s research agenda.

“These awards are meant to help teams test bold ideas and build the collaborations needed to sustain long-term research programs in brain health,” Behnaam Aazhang, Rice Brain Institute director and co-director of the Rice Neuroengineering Initiative, said in a news release.

The seed funding has been awarded to the following principal investigators:

  • Kevin McHugh, associate professor of bioengineering and chemistry at Rice, and Peter Kan, professor and chair of neurosurgery at the UTMB. McHugh and Kan are developing an injectable material designed to seal off fragile, abnormal blood vessels that can cause life-threatening bleeding in the brain.
  • Jerzy Szablowski, assistant professor of bioengineering at Rice, and Jochen Meyer, assistant professor of neurology at Baylor. Szablowski and Meyer are leading a nonsurgical, ultrasound approach to deliver gene-based therapies to deep brain regions involved in seizures to control epilepsy without implanted electrodes or invasive procedures.
  • Juliane Sempionatto, assistant professor of electrical and computer engineering at Rice, and Aaron Gusdon, associate professor of neurosurgery at UTHealth Houston. Sempionatto and Gusdon are leading efforts to create a blood test that can identify patients at high risk for delayed brain injury following aneurysm-related hemorrhage, which could lead to earlier intervention and improved outcomes.
  • Christina Tringides, assistant professor of materials science and nanoengineering at Rice, and Sujit Prabhu, professor of neurosurgery at MD Anderson, who are working to reduce the risk of long-term speech and language impairment during brain tumor removal by combining advanced brain recordings, imaging and noninvasive stimulation.

The grants were facilitated by Rice’s Educational and Research Initiatives for Collaborative Health (ENRICH) Office. Rice says that the unique split-funding model of these grants could help structure future collaborations between the university and the TMC.

The Rice Brain Institute launched this fall and aims to use engineering, natural sciences and social sciences to research the brain and reduce the burden of neurodegenerative, neurodevelopmental and mental health disorders. Last month, the university's Shepherd School of Music also launched the Music, Mind and Body Lab, an interdisciplinary hub that brings artists and scientists together to study the "intersection of the arts, neuroscience and the medical humanities." Read more here.