FibroBiologics will IPO this week. Photo via Getty Images

Want a piece of one of Houston’s most promising biotech companies? On January 31, FibroBiologics will begin the trading of its common stock on the Nasdaq stock exchange.

While most labs in the realm of regenerative medicine are focused on stem cells, FibroBiologics has bet on fibroblasts as the secret to treating myriad ailments. Fibroblasts, the most common type of cell in the body, are the primary cells that compose connective tissue.

Interested investors can find a prospectus to peruse before taking the leap. FibroBiologics filed with the U.S. Securities & Exchange Commission (SEC) on November 7, 2023. In September, FibroBiologics CEO Pete O’Heeron told InnovationMap, “I think what we're going to see is that fibroblasts are going to end up winning... They're just a better overall cell than the stem cells.”

O’Heeron was first exposed to the possibilities of fibroblasts as a means of regrowing discs in the spine. Since starting the company in 2008 as SpinalCyte, O’Heeron and FibroBiologics have organically written and filed more than 320 patents. Potential treatments go far beyond spinal surgery to include wound care, cancer, and multiple sclerosis.

According to O’Heeron, the goal in going public is to raise capital for human trials.

“We’ve had really fantastic results with animals and now we’re ready for humans,” he explained in September. “We've done small human trials, but we haven't done the large ones that are going to get the commercialization approval from the FDA.”

FibroBiologics is growing with impressive speed. O’Heeron told us that he is hiring as quickly as he is able to find qualified scientists with the expertise to do the one-of-a-kind work required. The company opened a new lab last fall at the UH Technology Bridge, Newlin-Linscomb Lab for Cell Therapies. With its new status as a publicly traded company, FibroBiologics is primed to break even more ground.

FibroBiologics is opening a unique new lab at the University of Houston's Technology Bridge. Photo by Natalie Harms/InnovationMap

Houston regenerative medicine company opens new lab at UH

cell therapy innovation

Pete O’Heeron wants you to know that “Bohemian Rhapsody” was originally released as a B-side. What does this nugget about Queen have to do with regenerative medicine? For O’Heeron and his company, FibroBiologics, it means everything.

That’s because most scientists consider stem cells the A-side when it comes to the race to curing disease. But FibroBiologics has set its sights on fibroblasts. The most common cell in the body, fibroblasts are the main cell type in connective tissue.

“Everyone was betting on stem cells, and we started betting on fibroblasts,” says O’Heeron, who started the company in 2008 as SpinalCyte. “I think what we're going to see is that fibroblasts are going to end up winning, there are more robust, more that are lower cost cell, they have higher therapeutic values, higher immune modulation. They're just a better overall cell than the than the stem cells.”

Since a neurosurgeon and a dermatologist first introduced O’Heeron to the idea of using fibroblasts to regrow discs in the spine, the company has expanded its reach to include promising treatments for multiple sclerosis and cancer and in wound care. Imagine a world where doctors lay fibroblasts directly onto surgical incisions after surgery, cutting the time for healing in half.

FibroBiologics has organically written and filed more than 320 patents.

“It's quite a unique situation. I don’t think that in other areas of science that you have such a wide open area to go out and patent. It's just it was a brand new area nobody had been working on,” O’Heeron explains.

And soon, investors will be able to own a stake in the impressive work being forged in Houston. FibroBiologics, previously FibroGenesis, was formed in order to go public in a direct NASDAQ listing. The goal is to access the capital necessary to go to human trials. Earlier this year, the company also launched a crowdfunding campaign.

“We’ve had really fantastic results with animals and now we’re ready for humans,” says O’Heeron. “We've done small human trials, but we haven't done the large ones that are going to get the commercialization approval from the FDA.”

With that in mind, the company just signed a deal with University of Houston’s Innovation Center. On Thursday, September 7, FibroBiologics will dedicate the Newlin-Linscomb Lab for Cell Therapies in the UH Technology Bridge. The new lab is named for former player and color commentator for the Houston Rockets, Mike Newlin and his wife, Cindy, as well as Pam and Dan Linscomb, a founding partner of Kuhl-Linscomb, one of the largest wealth management companies in Houston.

Other big local names newly attached to the company are astronaut Kate Rubins and Elizabeth Shpall, the director of the cell therapy laboratory at MD Anderson Cancer Center. Both have joined FibroBiologics as members of its scientific advisory board.

To fill the lab, O’Heeron says that he is adding to his team as quickly as he is able. The barrier is the fact that there are few, if any people in the world with the exact qualifications he’s seeking.

“Anytime you're breaking new scientific ground, you can't really just go out and recruit someone with that background because it really doesn't exist,” he says. But he is willing to teach and challenge scientists who are the right fit, and is hoping to expand the team in the new lab.

But like Queen did in 1975, FibroBiologics is pioneering a category of its own. And that’s something worth betting on.

A Houston research team is studying the effects of regenerative medicine on hearts. Photo via TMC.org

Innovative Houston lab works with 'ghost hearts' to study impact of regenerative medicine

stem cell magic

Ask any high achiever and they’ll tell you — failure is the path to success.

As Camila Hochman-Mendez puts it, “I’m like Thomas Edison, right? I know a thousand ways of how not to create a lightbulb.” But she’s not really talking about electricity. Hochman-Mendez is director of Regenerative Medicine Research and the Biorepository Core at Texas Heart Institute.

Hochman-Mendez follows another pioneering woman in the role, Doris Taylor. The younger scientist took on the prime job when Taylor left in 2020. By then, Hochman-Mendez had been at The Texas Heart Institute for three years, moving from research scientist to assistant director in just four months.

Regenerative Medicine is every bit as exciting as it sounds. At Hochman-Mendez’s lab, her team creates ghost hearts — organs from which all cells are scrubbed, leaving collagen, fibronectin, and laminin in the shape of the formerly beating ticker. The goal is to use the decellularized organs as protein scaffolds that, once injected with stem cells, will once again contract and pump blood.

Hochman-Mendez cautions that we are still years away from that point, but her lab is working hard to get there.

“The ultimate goal is to develop functional hearts that can be used for transplant,” says Hochman-Mendez.

Those hearts would be made from the patient’s own cells, avoiding organ rejection, which the scientist says is essentially trading one disease for another. But she is realistic about that fact that there are many barriers to her success.

“It does come with a lot of technical challenges,” she says.

These challenges include the simple number of cells that billions, and potentially hundreds of billions of cardiomyocytes are needed to recreate a human heart. The necessary protocols, Hochman-Mendez explains, are extremely costly and labor intensive.

It also takes 60 days for the cells to reach a maturity at which they can function. The lab recently received a pair of grants targeted at creating bioreactors that can be reliable for at least those 60 days.

The third major issue facing the Regenerative Medicine lab is contamination.

“It needs to be very sterile,” says Hochman-Mendez. “It needs to be so clean that if you have one tiny bacteria there, you’re screwed.”

Fortunately, the scientist says that her favorite hobby is computer programming. She and a physician colleague have created a robotic arm that can help to prevent the contamination that often stemmed from humans manually injecting stem cells into the decellularized organs.

This not only works towards solving the contamination problem, it also allows the team to more accurately distribute the cells that they add, using an injection map. To that end, she is producing a three-dimensional model of a protein scaffold that will allow her team and other scientists in the field of regenerative medicine to understand how the cells really disperse when they inject them.

When will her lab produce working hearts?

“I try to be very conservative on timing,” she says.

She explains that it will take significant leaps in technology to make a heart mature to the level at which it’s usable for an adult body in 60 days.

“That’s magic and I don’t believe in magic,” she says, but adds that she hopes to have a prototype ready to be tested in five years.

Hochman-Mendez does this all with a small team of nine researchers, most of whom happen to be female.

“The best candidates are the ones that I select," she says. "The majority are females. I think it’s a mix of trying to be very unbiased, but I usually don’t even look at the name before looking at the CV to preselect the people that I interview.”

And together, Hochman-Mendez are making medical history, one success-spawning failure at a time.

Camila Hochman-Mendez is director of Regenerative Medicine Research and the Biorepository Core at Texas Heart Institute. Photo via texasheart.org

You can now hop online and invest in this promising cell therapy startup. Photo via Getty Images

Houston biopharma company launches equity crowdfunding campaign

money moves

A clinical-stage company headquartered in Houston has opened an online funding campaign.

FibroBiologics, which is developing fibroblast cell-based therapeutics for chronic diseases, launched a campaign with equity crowdfunding platform StartEngine. The platform lets anyone — regardless of their net worth or income level — to invest in securities issued by startups.

The funding, according to a press release, will be used to support ongoing operations of Fibrobiologics and advance its clinical programs in multiple sclerosis, degenerative disc disease, wound care, extension of life, and cancer.

"We're excited to partner with StartEngine on this campaign. StartEngine has over 600,000 investors as part of their community and has raised over half a billion dollars for its clients," says FibroBiologics' Founder and CEO Pete O'Heeron, in the release.

"This is an exciting time at FibroBiologics as we continue progressing our clinical pipeline and developing innovative therapies to treat chronic diseases," he continues. "This new funding will fuel our growth in the lab and bring us one step closer to commercialization."

The campaign, launched this week, already has over 100 investors, at the time of publication, and has raised nearly $2 million, according to the page. The minimum investment is set at around $500, and the company's indicated valuation is $252.57 million.

In 2021, FibroBiologics announced its intention of going public. Last year, O'Heeron told InnovationMap on the Houston Innovators Podcast of the company's growth plans as well as the specifics of the technology.

Only two types of cells — stem cells and fibroblasts — can be used in cell therapy for a regenerative treatment, which is when specialists take healthy cells from a patient and inject them into a part of the body that needs it the most. As O'Heeron explains in the podcast, fibroblasts can do it more effectively and cheaper than stem cells.

"(Fibroblasts) can essentially do everything a stem cell can do, only they can do it better," says O'Heeron. "We've done tests in the lab and we've seen them outperform stem cells by a low of 50 percent to a high of about 220 percent on different disease paths."


Celltex is looking into using stem cells to treat COVID-19, and the Houston biotech company just got the green light to go to trials. Photo courtesy of Celltex

Houston biotech company gets FDA greenlight to move forward with COVID-19 stem cell treatment

coronavirus cure?

A Houston-based biotech company announced last week that it has gotten the approval it was seeking from the U.S. Food and Drug Administration to continue testing its COVID-19 treatment that uses stem cells.

Celltex has received approval from its Investigational New Drug application, or IND, to look into stem cells — specifically Autologous Adipose Tissue-Derived Mesenchymal Stem Cells, or AdMSCs — and their effect on COVID-19 patients.

"The FDA's approval of our IND is not only a critical milestone for Celltex, but also for everyone who has been affected by COVID-19," says David G. Eller, Celltex chairman and CEO. "I am optimistic that our findings will result in favorable outcomes that will improve lives today and for generations to come."

Celltex has been in the stem cell business for nearly a decade and has treated patients with debilitating diseases like multiple sclerosis, Parkinson's, rheumatoid arthritis, and more. Eller says he's been considering how Mesenchymal Stem Cells, or MSCs, could be used amid the pandemic.

"Throughout the entire pandemic, MSCs have shown promise for combatting symptoms and complications associated with COVID-19, and as the nation's leading commercial MSC banking and technology company, Celltex has the unique ability to transition these initial findings into a clinical trial," Eller says.

The FDA clearance will allow for a phase two trial "that will evaluate the safety and prophylactic efficacy of AdMSCs against COVID-19," according to the release. There will be 200 patients across multiple centers that will be involved in the placebo-controlled study.

Celltex offices out of the Galleria area and has laboratory operations of its wholly-owned Mexican subsidiary are located in Hospital Galenia in Cancún, Quintana Roo, Mexico. Last year, Celltex planned an expansion into Saudi Arabia and also has a presence in Europe.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

12 health tech startups named to Houston accelerator's next bootcamp

onboarding

Twelve promising health tech startups have been selected for the annual bootcamp at the Texas Medical Center.

TMC's Accelerator for HealthTech selected 12 companies from around the world and across specialties for the opportunity. Following the bootcamp, TMC will move forward a selection of startups to join its accelerator.

"Houston, a thriving hub for innovation, is rapidly becoming the destination of choice for healthtech companies," reads a statement from TMC. "With the Texas Medical Center at its heart, the city offers unparalleled resources, cutting-edge research facilities, and a collaborative spirit that fosters growth. This environment not only attracts startups but also provides them with the necessary tools to navigate the complex landscape of healthcare commercialization."

Through the bootcamp, the participants will engage with advisors and industry experts, refine their business models, prepare for market entry, and have opportunities for collaboration with the TMC's member organizations.

The selected bootcamp companies, according to TMC, include:

  • Alyf, founded in Newport Beach, California, has developed a personalized cardiac care system that brings patients and providers together with real-time, AI-driven insights, enabling them to monitor, track, and improve cardiac health outcomes collaboratively.
  • Seoul, South Korea-based Deepmetrics leverages artificial intelligence to provide ICU smart care services that optimize medical device settings, such as mechanical ventilators, to reduce mortality and shorten the length of stay for critically ill patients worldwide.
  • EquityQuotient, from New York City, is a healthcare intelligence platform that automates compliance and provides actionable insights by aggregating public, private, and first-party data, using proprietary analytics to help leaders address disparities, improve outcomes, and lower care costs.
  • Also from New York City, Ethermed's AI-powered solution streamlines prior authorizations, eliminating up to 90 percent of auths and 70 percent of the labor involved. Ethermed requires no workflow changes, is fully auditable, and offers aligned incentives from a mission-driven, human-focused company.
  • Fibricheck, based in Hasselt, Belgium, transforms ordinary smartphones into regulated digital heart rhythm monitors, offering unparalleled access to cardiovascular diagnostics for patients and streamlined workflows for physicians.
  • Austin-based NearWave has developed a non-invasive, AI-powered handheld imaging device that can predict breast cancer therapy response within seven days.
  • Pragmaclin, founded in Newfoundland, Canada, developed a cutting-edge PRIMS (Parkinson’s Remote Interactive Management System) that leverages depth cameras and machine learning to monitor and assess Parkinson’s Disease symptoms, offering healthcare professionals remote and in-clinic insights to enhance treatment decisions.
  • Somnair, a Baltimore, Maryland, company, is developing a non-invasive neurostimulation oral appliance for treating obstructive sleep apnea, offering a sleek, retainer-sized device that provides an effective alternative to CPAP or invasive surgery for millions of patients.
  • Vancouver, Canada-headquartered Total Flow Medical is developing solutions to enhance the quality of care and life for patients requiring the use of a heart-lung machine during surgery or life support.
  • Tympulse, hailing from Dublin, Ireland, is commercializing TympanoColl, an innovative and disruptive solution for eardrum (Tympanic Membrane) repair in an outpatient setting through the ear canal.
  • Perth, Australia-based Vital Trace is developing a continuous lactate monitor for real-time, accurate detection of fetal distress.
  • New York City's WorkUp is a healthcare-specific talent pipeline management platform that connects students with tailored resources for their clinical career journey, providing personalized support as their needs evolve.

University of Houston-founded company secures $2.5M in NIH grant funding

all in the timing

You could say that the booming success of Houston biotech company CellChorus owes very much to auspicious TIMING. Those six letters stand for Time-lapse Imaging Microscopy In Nanowell Grids, a platform for dynamic single-cell analysis.

This week, CellChorus announced that the company, along with The University of Houston, has been awarded up to $2.5 million in funding from the National Center for Advancing Translational Sciences (NCATS) at the National Institute of Health. A $350,000 Phase I grant is already underway. Once predetermined milestones are achieved, this will lead to a two-year $2.1 million Phase II grant.

The TIMING platform was created by UH Single Cell Lab researchers Navin Varadarajan and Badri Roysam. TIMING generates high-throughput in-vitro assays that quantitatively profile interactions between cells on a large scale, particularly what happens when immune cells confront target cells. This has been especially useful in the realm of immuno-oncology, where it has demonstrated its power in designing novel therapies, selecting lead candidates for clinical trials and evaluating the potency of manufactured cells.

“By combining AI, microscale manufacturing and advanced microscopy, the TIMING platform yields deep insight into cellular behaviors that directly impact human disease and new classes of therapeutics,” says Rebecca Berdeaux, chief scientific officer at CellChorus. “The generous support of NCATS enables our development of computational tools that will ultimately integrate single-cell dynamic functional analysis of cell behavior with intracellular signaling events.”

Houston’s CellChorus Innovation Lab supports both the further development of TIMING and projects for early-access customers. Those customers include top-25 biopharmaceutical companies, venture-backed biotechnology companies, a leading comprehensive cancer center and a top pediatric hospital, says CEO Daniel Meyer.

CellChorus’s publications include papers written in collaboration with researchers from the Baylor College of Medicine, Houston Methodist, MD Anderson, Texas Children’s Hospital, the University of Texas and UTHealth in journals including Nature Cancer, Journal of Clinical Investigation and The Journal for ImmunoTherapy of Cancer.

The new Small Business Technology Transfer (STTR) award will specifically support the development of a scalable integrated software system conceived with the goal of analyzing cells that are not fluorescently labeled. This label-free analysis will be based on new AI and machine learning (ML) models trained on tens of millions of images of cells.

“This is an opportunity to leverage artificial intelligence methods for advancing the life sciences,” says Roysam. “We are especially excited about its applications to advancing cell-based immunotherapy to treat cancer and other diseases.”

The Houston-born-and-bred company couldn’t have a more appropriate home, says Meyer.

“Houston is a premier location for clinical care and the development of biotechnology and life sciences technologies. In particular, Houston has established itself as a leader in the development and delivery of immune cell-based therapies,” the CEO explains. “As a spin-out from the Single Cell Lab at the University of Houston, we benefit from working with world-class experts at local institutions.”

In May, the company received a similar $2.5 million SBIR grant from NCATS at the NIH. Also this summer, CellChorus's technology was featured in Nature Cancer.

Bridging the skills gap: How recent college grads can help address urgent staffing needs

guest column

With the current low unemployment rate, locating seasoned and talented staffers who require minimal training is no small task, especially within the high-tech sector. At the same time, college graduates are hungry for new opportunities. In fact, according to the Federal Reserve Bank of St. Louis, many new workforce members are currently underemployed. Approximately 4 in 10 are working in a job that does not utilize the skills they recently obtained on a college campus.

On the employer side, there’s the fear of excessive onboarding needs. On top of that, many hiring managers are afraid that recently trained staffers will simply move on to a new opportunity in a few short years or even months.

But when faced with multiple open positions, is it worth taking the chance on the newest members of the workforce? Here’s some advice on how to successfully navigate the current hiring atmosphere, where college graduates may play a big role in combatting staffing shortages.

Consider culture fit

Hard skills are always important. But at the same time, recognize bright and energetic applicants equipped with a baseline of strong knowledge also tend to be rapid learners. These individuals can often get up to speed quickly as long as they receive the appropriate level of training and mentoring over their first few months on the job. In short, there are many cases where hard skills can be taught.

But how about soft skills?

Identifying candidates who understand and appreciate the company’s culture is a separate but critically important issue. When considering whether to bring an individual on board, be sure to assess all of their compatibilities as well. Often, some extra training for an employee who already values and appreciates the company environment results in a staff member who will stay with and benefit the organization for many years to come.

Look for transferable skills

In the current highly competitive hiring atmosphere, it can be difficult to locate candidates with skills that perfectly align with the needs of open positions. Therefore, it’s important for HR staff and hiring managers to consider transferrable skills. While an individual candidate may not be familiar with a particular software solution, do they have any experience that suggests they are well-equipped to navigate relatively similar systems? Be sure to closely review resumes and CVs that might reveal these hidden strengths. In addition, make certain your list of candidate interview questions is crafted to elucidate this kind of information. Remember that recent college graduates often lack significant interview experience. As a result, you may need to pose specific questions that get to the heart of the information you are seeking. For example, you might ask a candidate to relay past experiences where they needed to learn a new skill or solve a complex problem rapidly. This helps identify whether they can navigate new waters in the workplace or whether they can translate previously held skills into new ones.

Benefits of in-house development programs

Skilled employee shortages tend to surface repeatedly. Even if you don’t have any openings right now, things can change rapidly in a matter of months or even weeks. Because this is the case - especially in the technology sector - consider launching internal training programs that help recent hires learn new skills or sharpen older ones. One option would be in-house training by a skilled staffer as part of the new employee onboarding process. Other possibilities include online learning sessions or a partnership with a local college. Training programs can also be launched to help longtime employees learn new skills as emerging, modernized systems are introduced into the workplace, benefitting the company’s entire workforce.

Track new employee progress

All new employees — whether they are recent college grads or more established members of the workforce - can benefit greatly from a performance review process that features frequent check-ins throughout the initial stages of employment. Supervisors should try to meet weekly or biweekly with new staff during their onboarding process to assess their progress in learning new skills, while identifying needs for additional training. Managers should also regularly communicate with mentors assigned to new employees to ensure skills are developed in a positive learning atmosphere.

In addition to any perceived hurdles, companies should also consider the many benefits of hiring recent college graduates. In some cases, they might bring with them new insights and experiences with emerging technologies. They often arrive with an eagerness to learn and they can introduce ideas and energy, creating increased enthusiasm in the workplace.

When it comes to filling vacant positions, there are many cases where considering recent college graduates can greatly benefit your company. A little training and mentoring can often go a long way and sometimes, taking a chance on a yet unproven, but smart and energetic candidate can land a professional who will benefit the organization for years or even decades to come.

------

Jill Chapman is a director of early talent programs with Insperity, a leading provider of human resources and business performance solutions.