FibroBiologics has opened a new 10,000-square-foot Houston lab to scale up research efforts and pave the way for in-house manufacturing. Photo via Fibrobiologics.com

A Houston regenerative medicine company has unveiled new laboratory space with the goal of expanding its pioneering science.

FibroBiologics uses fibroblasts, the body’s most common type of cell, rather than stem cells, to help grow new cells. Fibroblasts are the primary variety of cells that compose connective tissue. FibroBiologics has found in studies that fibroblasts can be even more powerful than stem cells when it comes to both regeneration and immune modulation, meaning they could be a more versatile way forward in those fields.

In 2023, FibroBiologics moved into new lab space in the UH Technology Bridge. Now, with its new space, the publicly traded company, which has more than 240 patents issued or pending, will be even better equipped to power forward with its research.

The new space includes more than 10,000 square feet of space devoted to both labs and offices. The location is large enough to also house manufacturing drug product candidates that will be used in upcoming trials. Additionally, the company reports that it plans to hire additional researchers to help staff the facility.

“This expansion marks a transformative step forward for our company and our mission,” Pete O’Heeron, FibroBiologics founder and CEO, said in a news release. “By significantly increasing the size of our lab, we are creating the space and infrastructure needed to foster greater innovation and accelerate scientific breakthroughs.”

The streamlined, in-house manufacturing process will reduce the company’s reliance on external partners and make the supply chain simpler, O’Heeron added in the release.

Hamid Khoja, the chief scientific officer for FibroBiologics, also chimed in.

“To date, our progress in developing potentially transformative therapeutic candidates for chronic diseases using fibroblasts has been remarkable,” he added in the release. “This new laboratory facility will enable further expansion and acceleration of our research and development efforts. Additionally, the expansive new space will enable us to bring in-house currently outsourced projects, expand our science team and further contribute to the increased efficiency of our R&D efforts.”

This news arrives shortly after a milestone for the company in its research about neurodegenerative disease. Last month, fibroblast treatments in an animal model study demonstrated a notable regeneration of the myelin sheath, the layer that insulates nerves and is worn down by disease.

“Confirming remyelination in a second validated animal model is an important step in our research and development efforts, offering fresh hope for patients with demyelinating diseases, including multiple sclerosis,” O’Heeron added in a separate release. “These findings advance our mission to develop transformative fibroblast-based therapies that address the root causes of chronic disease, not just their symptoms, and reflect our dedication to pushing the frontiers of regenerative medicine."

FibroBiologics will IPO this week. Photo via Getty Images

Houston regenerative medicine company to IPO, move toward more human trials

ready to list

Want a piece of one of Houston’s most promising biotech companies? On January 31, FibroBiologics will begin the trading of its common stock on the Nasdaq stock exchange.

While most labs in the realm of regenerative medicine are focused on stem cells, FibroBiologics has bet on fibroblasts as the secret to treating myriad ailments. Fibroblasts, the most common type of cell in the body, are the primary cells that compose connective tissue.

Interested investors can find a prospectus to peruse before taking the leap. FibroBiologics filed with the U.S. Securities & Exchange Commission (SEC) on November 7, 2023. In September, FibroBiologics CEO Pete O’Heeron told InnovationMap, “I think what we're going to see is that fibroblasts are going to end up winning... They're just a better overall cell than the stem cells.”

O’Heeron was first exposed to the possibilities of fibroblasts as a means of regrowing discs in the spine. Since starting the company in 2008 as SpinalCyte, O’Heeron and FibroBiologics have organically written and filed more than 320 patents. Potential treatments go far beyond spinal surgery to include wound care, cancer, and multiple sclerosis.

According to O’Heeron, the goal in going public is to raise capital for human trials.

“We’ve had really fantastic results with animals and now we’re ready for humans,” he explained in September. “We've done small human trials, but we haven't done the large ones that are going to get the commercialization approval from the FDA.”

FibroBiologics is growing with impressive speed. O’Heeron told us that he is hiring as quickly as he is able to find qualified scientists with the expertise to do the one-of-a-kind work required. The company opened a new lab last fall at the UH Technology Bridge, Newlin-Linscomb Lab for Cell Therapies. With its new status as a publicly traded company, FibroBiologics is primed to break even more ground.

FibroBiologics is opening a unique new lab at the University of Houston's Technology Bridge. Photo by Natalie Harms/InnovationMap

Houston regenerative medicine company opens new lab at UH

cell therapy innovation

Pete O’Heeron wants you to know that “Bohemian Rhapsody” was originally released as a B-side. What does this nugget about Queen have to do with regenerative medicine? For O’Heeron and his company, FibroBiologics, it means everything.

That’s because most scientists consider stem cells the A-side when it comes to the race to curing disease. But FibroBiologics has set its sights on fibroblasts. The most common cell in the body, fibroblasts are the main cell type in connective tissue.

“Everyone was betting on stem cells, and we started betting on fibroblasts,” says O’Heeron, who started the company in 2008 as SpinalCyte. “I think what we're going to see is that fibroblasts are going to end up winning, there are more robust, more that are lower cost cell, they have higher therapeutic values, higher immune modulation. They're just a better overall cell than the than the stem cells.”

Since a neurosurgeon and a dermatologist first introduced O’Heeron to the idea of using fibroblasts to regrow discs in the spine, the company has expanded its reach to include promising treatments for multiple sclerosis and cancer and in wound care. Imagine a world where doctors lay fibroblasts directly onto surgical incisions after surgery, cutting the time for healing in half.

FibroBiologics has organically written and filed more than 320 patents.

“It's quite a unique situation. I don’t think that in other areas of science that you have such a wide open area to go out and patent. It's just it was a brand new area nobody had been working on,” O’Heeron explains.

And soon, investors will be able to own a stake in the impressive work being forged in Houston. FibroBiologics, previously FibroGenesis, was formed in order to go public in a direct NASDAQ listing. The goal is to access the capital necessary to go to human trials. Earlier this year, the company also launched a crowdfunding campaign.

“We’ve had really fantastic results with animals and now we’re ready for humans,” says O’Heeron. “We've done small human trials, but we haven't done the large ones that are going to get the commercialization approval from the FDA.”

With that in mind, the company just signed a deal with University of Houston’s Innovation Center. On Thursday, September 7, FibroBiologics will dedicate the Newlin-Linscomb Lab for Cell Therapies in the UH Technology Bridge. The new lab is named for former player and color commentator for the Houston Rockets, Mike Newlin and his wife, Cindy, as well as Pam and Dan Linscomb, a founding partner of Kuhl-Linscomb, one of the largest wealth management companies in Houston.

Other big local names newly attached to the company are astronaut Kate Rubins and Elizabeth Shpall, the director of the cell therapy laboratory at MD Anderson Cancer Center. Both have joined FibroBiologics as members of its scientific advisory board.

To fill the lab, O’Heeron says that he is adding to his team as quickly as he is able. The barrier is the fact that there are few, if any people in the world with the exact qualifications he’s seeking.

“Anytime you're breaking new scientific ground, you can't really just go out and recruit someone with that background because it really doesn't exist,” he says. But he is willing to teach and challenge scientists who are the right fit, and is hoping to expand the team in the new lab.

But like Queen did in 1975, FibroBiologics is pioneering a category of its own. And that’s something worth betting on.

A Houston research team is studying the effects of regenerative medicine on hearts. Photo via TMC.org

Innovative Houston lab works with 'ghost hearts' to study impact of regenerative medicine

stem cell magic

Ask any high achiever and they’ll tell you — failure is the path to success.

As Camila Hochman-Mendez puts it, “I’m like Thomas Edison, right? I know a thousand ways of how not to create a lightbulb.” But she’s not really talking about electricity. Hochman-Mendez is director of Regenerative Medicine Research and the Biorepository Core at Texas Heart Institute.

Hochman-Mendez follows another pioneering woman in the role, Doris Taylor. The younger scientist took on the prime job when Taylor left in 2020. By then, Hochman-Mendez had been at The Texas Heart Institute for three years, moving from research scientist to assistant director in just four months.

Regenerative Medicine is every bit as exciting as it sounds. At Hochman-Mendez’s lab, her team creates ghost hearts — organs from which all cells are scrubbed, leaving collagen, fibronectin, and laminin in the shape of the formerly beating ticker. The goal is to use the decellularized organs as protein scaffolds that, once injected with stem cells, will once again contract and pump blood.

Hochman-Mendez cautions that we are still years away from that point, but her lab is working hard to get there.

“The ultimate goal is to develop functional hearts that can be used for transplant,” says Hochman-Mendez.

Those hearts would be made from the patient’s own cells, avoiding organ rejection, which the scientist says is essentially trading one disease for another. But she is realistic about that fact that there are many barriers to her success.

“It does come with a lot of technical challenges,” she says.

These challenges include the simple number of cells that billions, and potentially hundreds of billions of cardiomyocytes are needed to recreate a human heart. The necessary protocols, Hochman-Mendez explains, are extremely costly and labor intensive.

It also takes 60 days for the cells to reach a maturity at which they can function. The lab recently received a pair of grants targeted at creating bioreactors that can be reliable for at least those 60 days.

The third major issue facing the Regenerative Medicine lab is contamination.

“It needs to be very sterile,” says Hochman-Mendez. “It needs to be so clean that if you have one tiny bacteria there, you’re screwed.”

Fortunately, the scientist says that her favorite hobby is computer programming. She and a physician colleague have created a robotic arm that can help to prevent the contamination that often stemmed from humans manually injecting stem cells into the decellularized organs.

This not only works towards solving the contamination problem, it also allows the team to more accurately distribute the cells that they add, using an injection map. To that end, she is producing a three-dimensional model of a protein scaffold that will allow her team and other scientists in the field of regenerative medicine to understand how the cells really disperse when they inject them.

When will her lab produce working hearts?

“I try to be very conservative on timing,” she says.

She explains that it will take significant leaps in technology to make a heart mature to the level at which it’s usable for an adult body in 60 days.

“That’s magic and I don’t believe in magic,” she says, but adds that she hopes to have a prototype ready to be tested in five years.

Hochman-Mendez does this all with a small team of nine researchers, most of whom happen to be female.

“The best candidates are the ones that I select," she says. "The majority are females. I think it’s a mix of trying to be very unbiased, but I usually don’t even look at the name before looking at the CV to preselect the people that I interview.”

And together, Hochman-Mendez are making medical history, one success-spawning failure at a time.

Camila Hochman-Mendez is director of Regenerative Medicine Research and the Biorepository Core at Texas Heart Institute. Photo via texasheart.org

You can now hop online and invest in this promising cell therapy startup. Photo via Getty Images

Houston biopharma company launches equity crowdfunding campaign

money moves

A clinical-stage company headquartered in Houston has opened an online funding campaign.

FibroBiologics, which is developing fibroblast cell-based therapeutics for chronic diseases, launched a campaign with equity crowdfunding platform StartEngine. The platform lets anyone — regardless of their net worth or income level — to invest in securities issued by startups.

The funding, according to a press release, will be used to support ongoing operations of Fibrobiologics and advance its clinical programs in multiple sclerosis, degenerative disc disease, wound care, extension of life, and cancer.

"We're excited to partner with StartEngine on this campaign. StartEngine has over 600,000 investors as part of their community and has raised over half a billion dollars for its clients," says FibroBiologics' Founder and CEO Pete O'Heeron, in the release.

"This is an exciting time at FibroBiologics as we continue progressing our clinical pipeline and developing innovative therapies to treat chronic diseases," he continues. "This new funding will fuel our growth in the lab and bring us one step closer to commercialization."

The campaign, launched this week, already has over 100 investors, at the time of publication, and has raised nearly $2 million, according to the page. The minimum investment is set at around $500, and the company's indicated valuation is $252.57 million.

In 2021, FibroBiologics announced its intention of going public. Last year, O'Heeron told InnovationMap on the Houston Innovators Podcast of the company's growth plans as well as the specifics of the technology.

Only two types of cells — stem cells and fibroblasts — can be used in cell therapy for a regenerative treatment, which is when specialists take healthy cells from a patient and inject them into a part of the body that needs it the most. As O'Heeron explains in the podcast, fibroblasts can do it more effectively and cheaper than stem cells.

"(Fibroblasts) can essentially do everything a stem cell can do, only they can do it better," says O'Heeron. "We've done tests in the lab and we've seen them outperform stem cells by a low of 50 percent to a high of about 220 percent on different disease paths."


Celltex is looking into using stem cells to treat COVID-19, and the Houston biotech company just got the green light to go to trials. Photo courtesy of Celltex

Houston biotech company gets FDA greenlight to move forward with COVID-19 stem cell treatment

coronavirus cure?

A Houston-based biotech company announced last week that it has gotten the approval it was seeking from the U.S. Food and Drug Administration to continue testing its COVID-19 treatment that uses stem cells.

Celltex has received approval from its Investigational New Drug application, or IND, to look into stem cells — specifically Autologous Adipose Tissue-Derived Mesenchymal Stem Cells, or AdMSCs — and their effect on COVID-19 patients.

"The FDA's approval of our IND is not only a critical milestone for Celltex, but also for everyone who has been affected by COVID-19," says David G. Eller, Celltex chairman and CEO. "I am optimistic that our findings will result in favorable outcomes that will improve lives today and for generations to come."

Celltex has been in the stem cell business for nearly a decade and has treated patients with debilitating diseases like multiple sclerosis, Parkinson's, rheumatoid arthritis, and more. Eller says he's been considering how Mesenchymal Stem Cells, or MSCs, could be used amid the pandemic.

"Throughout the entire pandemic, MSCs have shown promise for combatting symptoms and complications associated with COVID-19, and as the nation's leading commercial MSC banking and technology company, Celltex has the unique ability to transition these initial findings into a clinical trial," Eller says.

The FDA clearance will allow for a phase two trial "that will evaluate the safety and prophylactic efficacy of AdMSCs against COVID-19," according to the release. There will be 200 patients across multiple centers that will be involved in the placebo-controlled study.

Celltex offices out of the Galleria area and has laboratory operations of its wholly-owned Mexican subsidiary are located in Hospital Galenia in Cancún, Quintana Roo, Mexico. Last year, Celltex planned an expansion into Saudi Arabia and also has a presence in Europe.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston climbs to top 10 spot on North American tech hubs index

tech report

Houston already is the Energy Capital of the World, and now it’s gaining ground as a tech hub.

On Site Selection magazine’s 2026 North American Tech Hub Index, Houston jumped to No. 10 from No. 16 last year. The index relies on data from Site Selection as well as data from CBRE, CompTIA and TeleGeography to rank the continent’s tech hotspots. The index incorporates factors such as internet connectivity, tech talent and facility projects for tech companies.

In 2023, the Greater Houston Partnership noted the region had “begun to receive its due as a prominent emerging tech hub, joining the likes of San Francisco and Austin as a major player in the sector, and as a center of activity for the next generation of innovators and entrepreneurs.”

The Houston-area tech sector employs more than 230,000 people, according to the partnership, and generates an economic impact of $21.2 billion.

Elsewhere in Texas, two other metros fared well on the Site Selection index:

  • Dallas-Fort Worth nabbed the No. 1 spot, up from No. 2 last year.
  • Austin rose from No. 8 last year to No. 7 this year.

San Antonio slid from No. 18 in 2025 to No. 22 in 2026, however.

Two economic development officials in DFW chimed in about the region’s No. 1 ranking on the index:

  • “This ranking affirms what we’ve long seen on the ground — Dallas-Fort Worth is a top-tier technology and innovation center,” said Duane Dankesreiter, senior vice president of research and innovation at the Dallas Regional Chamber. “Our region’s scale, talent base, and diverse strengths … continue to set DFW apart as a national leader.”
  • “Being recognized as the top North American tech hub underscores the strength of the entire Dallas-Fort Worth region as a center of innovation and next-generation technology,” said Robert Allen, president and CEO of the Fort Worth Economic Development Partnership.

While not directly addressing Austin’s Site Selection ranking, Thom Singer, CEO of the Austin Technology Council, recently pondered whether Silicon Hills will grow “into the kind of community that other cities study for the right reasons.”

“Austin tech is not a club. It is not a scene. It is not a hashtag, a happy hour, or any one place or person,” Singer wrote on the council’s blog. “Austin tech is an economic engine and a global brand, built by thousands of people who decided to take a risk, build something, hire others, and be part of a community that is still young enough to reinvent itself.”

South of Austin, Port San Antonio is driving much of that region’s tech activity. Occupied by more than 80 employers, the 1,900-acre tech and innovation campus was home to 18,400 workers in 2024 and created a local economic impact of $7.9 billion, according to a study by Zenith Economics.

“Port San Antonio is a prime example of how innovation and infrastructure come together to strengthen [Texas’] economy, support thousands of good jobs, and keep Texas competitive on the global stage,” said Kelly Hancock, the acting state comptroller.

14 Houston startups starting 2026 with fresh funding

cha-ching

Houston startups closed out the last half of 2025 with major funding news.

Here are 14 Houston companies—from groundbreaking energy leaders to growing space startups—that secured funding in the last six months of the year, according to reporting by InnovationMap and our sister site, EnergyCapitalHTX.com.

Did we miss a funding round? Let us know by emailing innoeditor@innovationmap.com.

Fervo Energy

Fervo Energy has closed an oversubscribed Series E. Photo via Fervo Energy

Houston-based geothermal energy company Fervo Energy closed an oversubscribed $462 million series E funding round, led by new investor B Capital, in December.

The company also secured $205.6 million from three sources in June.

“Fervo is setting the pace for the next era of clean, affordable, and reliable power in the U.S.,” Jeff Johnson, general partner at B Capital, said in a news release.

The funding will support the continued buildout of Fervo’s Utah-based Cape Station development, which is slated to start delivering 100 MW of clean power to the grid beginning in 2026. Cape Station is expected to be the world's largest next-generation geothermal development, according to Fervo. The development of several other projects will also be included in the new round of funding. Continue reading.

Square Robot

Houston robotics co. unveils new robot that can handle extreme temperatures

Square Robot's technology eliminates the need for humans to enter dangerous and toxic environments. Photo courtesy of Square Robot

Houston- and Boston-based Square Robot Inc. announced a partnership with downstream and midstream energy giant Marathon Petroleum Corp. (NYSE: MPC) last month.

The partnership came with an undisclosed amount of funding from Marathon, which Square Robot says will help "shape the design and development" of its submersible robotics platform and scale its fleet for nationwide tank inspections. Continue reading.

Eclipse Energy

Eclipse Energy and Weatherford International are expected to launch joint projects early this year. Photo courtesy of Eclipse Energy.

Oil and gas giant Weatherford International (NASDAQ: WFRD) made a capital investment for an undisclosed amount in Eclipse Energy in December as part of a collaborative partnership aimed at scaling and commercializing Eclipse's clean fuel technology.

According to a release, joint projects from the two Houston-based companies are expected to launch as soon as this month. The partnership aims to leverage Weatherford's global operations with Eclipse Energy's pioneering subsurface biotechnology that converts end-of-life oil fields into low-cost, sustainable hydrogen sources. Continue reading.

Venus Aerospace 

Lockheed Martin Ventures says it's committed to helping Houston-based Venus Aerospace scale its technology. Photo courtesy Venus Aerospace

Venus Aerospace, a Houston-based startup specializing in next-generation rocket engine propulsion, has received funding from Lockheed Martin Ventures, the investment arm of aerospace and defense contractor Lockheed Martin, for an undisclosed amount, the company announced in November. The product lineup at Lockheed Martin includes rockets.

The investment follows Venus’ successful high-thrust test flight of its rotating detonation rocket engine (RDRE) in May. Venus says it’s the only company in the world that makes a flight-proven, high-thrust RDRE with a “clear path to scaled production.”

Venus says the Lockheed Martin Ventures investment reflects the potential of Venus’ dual-use technology for defense and commercial uses. Continue reading.

Koda Health

Tatiana Fofanova and Dr. Desh Mohan, founders of Koda Health, which recently closed a $7 million series A. Photo courtesy Koda Health.

Houston-based digital advance care planning company Koda Health closed an oversubscribed $7 million series A funding round in October.

The round, led by Evidenced, with participation from Mudita Venture Partners, Techstars and Texas Medical Center, will allow the company to scale operations and expand engineering, clinical strategy and customer success, according to a news release.

The company shared that the series A "marks a pivotal moment," as it has secured investments from influential leaders in the healthcare and venture capital space. Continue reading.

Hertha Metals

U.S. Rep. Morgan Luttrell, a Magnolia Republican, and Hertha Metals founder and CEO Laureen Meroueh toured Hertha’s Conroe plant in August. Photo courtesy Hertha Metals/Business Wire.

Conroe-based Hertha Metals, a producer of substantial steel, hauled in more than $17 million in venture capital from Khosla Ventures, Breakthrough Energy Fellows, Pear VC, Clean Energy Ventures and other investors.

The money was put toward the construction and the launch of its 1-metric-ton-per-day pilot plant in Conroe, where its breakthrough in steelmaking has been undergoing tests. The company uses a single-step process that it claims is cheaper, more energy-efficient and equally as scalable as conventional steelmaking methods. The plant is fueled by natural gas or hydrogen.

The company, founded in 2022, plans to break ground early this year on a new plant. The facility will be able to produce more than 9,000 metric tons of steel per year. Continue reading.

Helix Earth Technologies, Resilitix Intelligence and Fluxworks Inc.

Helix Earth's technology is estimated to save up to half of the net energy used in commercial air conditioning, reducing both emissions and costs for operators. Photo via Getty Images

Houston-based Helix Earth Technologies, Resilitix Intelligence and Fluxworks Inc. each secured $1.2 million in federal funding through the Small Business Innovation Research (SBIR) Phase II grant program this fall.

The three grants from the National Scienve foundation officially rolled out in early September 2025 and are expected to run through August 2027, according to the NSF. The SBIR Phase II grants support in-depth research and development of ideas that showed potential for commercialization after receiving Phase I grants from government agencies.

However, congressional authority for the program, often called "America's seed fund," expired on Sept. 30, 2025, and has stalled since the recent government shutdown. Continue reading.

Solidec Inc. (pre-seed)

7 innovative startups that are leading the energy transition in Houston

Houston-based Solidec was founded around innovations developed by Rice University associate professor Haotian Wang (far left). Photo courtesy Greentown Labs.

Solidec, a Houston startup that specializes in manufacturing “clean” chemicals, raised more than $2 million in pre-seed funding in August.

Houston-based New Climate Ventures led the oversubscribed pre-seed round, with participation from Plug and Play Ventures, Ecosphere Ventures, the Collaborative Fund, Safar Partners, Echo River Capital and Semilla Climate Capital, among other investors. Continue reading.

Molecule

Sameer Soleja is the founder and CEO of Molecule, which just closed its series B round. Photo courtesy of Molecule Software.

Houston-based energy trading risk management (ETRM) software company Molecule completed a successful series B round for an undisclosed amount, according to a July 16 release from the company.

The raise was led by Sundance Growth, a California-based software growth equity firm. Sameer Soleja, founder and CEO of Molecule, said in the release that the funding will allow the company to "double down on product innovation, grow our team, and reach even more markets." Continue reading.

Rarefied Studios, Solidec Inc. and Affekta

Houston startups were named among the nearly 300 recipients that received a portion of $44.85 million from NASA to develop space technology this fall. Photo via NASA/Ben Smegelsky

Houston-based Rarefied Studios, Solidec Inc. and Affekta were granted awards from NASA this summer to develop new technologies for the space agency.

The companies are among nearly 300 recipients that received a total agency investment of $44.85 million through the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Phase I grant programs, according to NASA.

Each selected company received $150,000 and, based on their progress, will be eligible to submit proposals for up to $850,000 in Phase II funding to develop prototypes. The SBIR program lasts for six months and contracts small businesses. Continue reading.

Intuitive Machines 

Intuitive Machines expects to begin manufacturing and flight integration on its orbital transfer vehicle as soon as 2026. Photo courtesy Intuitive Machines.

Houston-based Intuitive Machines secured a $9.8 million Phase II government contract for its orbital transfer vehicle in July.

The contract was expected to push the project through its Critical Design Review phase, which is the final engineering milestone before manufacturing can begin, according to a news release from the company. Intuitive Machines reported that it expected to begin manufacturing and flight integration for its orbital transfer vehicle as soon as this year, once the design review is completed.

The non-NASA contract is for an undisclosed government customer, which Intuitive Machines says reinforces its "strategic move to diversify its customer base and deliver orbital capabilities that span commercial, civil, and national security space operations." Continue reading.

NRG inks new virtual power plant partnership to meet surging energy demands

Powering Up

Houston-based NRG Energy recently announced a new long-term partnership with San Francisco-based Sunrun that aims to meet Texas’ surging energy demands and accelerate the adoption of home battery storage in Texas. The partnership also aligns with NRG’s goal of developing a 1-gigawatt virtual power plant by connecting thousands of decentralized energy sources by 2035.

Through the partnership, the companies will offer Texas residents home energy solutions that pair Sunrun’s solar-plus-storage systems with optimized rate plans and smart battery programming through Reliant, NRG’s retail electricity provider. As new customers enroll, their stored energy can be aggregated and dispatched to the ERCOT grid, according to a news release.

Additionally, Sunrun and NRG will work to create customer plans that aggregate and dispatch distributed power and provide electricity to Texas’ grid during peak periods.

“Texas is growing fast, and our electricity supply must keep pace,” Brad Bentley, executive vice president and president of NRG Consumer, said in the release. “By teaming up with Sunrun, we’re unlocking a new source of dispatchable, flexible energy while giving customers the opportunity to unlock value from their homes and contribute to a more resilient grid

Participating Reliant customers will be paid for sharing their stored solar energy through the partnership. Sunrun will be compensated for aggregating the stored capacity.

“This partnership demonstrates the scale and strength of Sunrun’s storage and solar distributed power plant assets,” Sunrun CEO Mary Powell added in the release. “We are delivering critical energy infrastructure that gives Texas families affordable, resilient power and builds a reliable, flexible power plant for the grid.”

In December, Reliant also teamed up with San Francisco tech company GoodLeap to bolster residential battery participation and accelerate the growth of NRG’s virtual power plant network in Texas.

In 2024, NRG partnered with California-based Renew Home to distribute hundreds of thousands of VPP-enabled smart thermostats by 2035 to help households manage and lower their energy costs. At the time, the company reported that its 1-gigawatt VPP would be able to provide energy to 200,000 homes during peak demand.

---

This article originally appeared on EnergyCapitalHTX.com.