Houston-based health tech organization had experiments on Blue Origin's last mission. Photo courtesy of Blue Origin

Houston's Translational Research Institute for Space Health, or TRISH, conducted cutting-edge research onboard Blue Origin's New Shepard rocket that launched Friday, November 22.

The NS-28 mission sent private astronauts on an 11-minute suborbital journey past the recognized boundary of space known as the Kármán line, according to Blue Origin's website. While on board, astronauts wore a medical-grade BioButton device, known as a BioIntelliSense, that monitored vital signs and biometric readings.

The findings will add to TRISH's Enhancing eXploration Platforms and ANalog Definition, or EXPAND, program and were the first data sets captured from a suborbital flight.

“This initiative enables TRISH to further our research in space medicine by collecting valuable human health data,” Jimmy Wu, TRISH deputy director and chief engineer and assistant professor at Baylor, said in a statement. “New data from suborbital flights builds our understanding of how the human body responds to spaceflight. This holistic view is key in keeping humans healthy and safe in space.”

The experiments were also TRISH's first on a Blue Origin mission.

TRISH, which is part of BCM’s Center for Space Medicine with partners Caltech and MIT, has launched experiments on numerous space missions to date, with each contributing to its EXPAND platform, which compiles research on human health while in space.

In January, TRISH launched six experiments onboard Houston-based Axiom Space's third private astronaut mission to the International Space Station, known as Ax-3. Prior to that, it also sent experiments on board the Ax-2 in May 2023. The research considered topics ranging from changes in astronauts memory before and after space travel to sleep and motor skills.

TRISH also launched experiments onboard SpaceX's Polaris Dawn mission this fall and on the Inspiration4 all-civilian mission to orbit in 2021.

TRISH published its findings from the Inspiration4 mission in the journal Nature this summer. The study showed that "short-duration missions do not pose a significant health risk" to humans onboard. Read more about the team's findings here.

The projects focus on an array of topics from the challenges of harmful space radiation to the reliability of space robots. Photo via Pexels

Rice University awards $150,000 to space researchers

future of space

The Rice Space Institute has awarded $150,000 in seed funding to six university researchers to further their work in space-related science and engineering.

The projects each will receive $25,000 until June 2025, according to Rice. They focus on an array of topics from the challenges of harmful space radiation to the reliability of space robots.

“These projects collectively represent RSI’s commitment to pioneering studies that advance Rice’s space research portfolio,” RSI Director David Alexander, said in a statement.

The projects include:

  • Co-advancement of formal methods and prognostic digital twins for reliability and resilience of space robotics: The project aims to make space robots more reliable by improving the lifespan of robotic components operating in space.
  • Development of 3D-printed waveguide arrays for snapshot spectrometers for Earth remote sensing observations: The project will develop 3D waveguide components and a hyperspectral imaging system that will help provide data on Earth's water cycle. It's led by Tomasz Tkaczyk.
  • Haptic sensory feedback augmentation to mitigate vestibular deficits following microgravity exposure: The project focuses on a device that uses vibrotactile feedback to improve astronauts' balance and movement impairments due to microgravity. It's led by Marcia O’Malley, Vanessa Sanchez, Shane King and Kyra Stovicek.
  • Modeling framework for bioelectricity and its effect on the mechano-biology of wounds to accelerate healing in microgravity environments: The project focuses on the effect of bioelectricity on wound healing in microgravity. It's led by Raudel Avila, Swathi Balaji and K. Jane Grande-Allen.
  • The role of the environment in planet formation: The project will develop a conference at at the Rice Global Paris Center for foster collaboration between Rice, RSI and international institutions for students, researchers and faculty. It's led by Megan Reiter.
  • Spark plasma sintered high-density and lightweight boron nitrides ceramics for radiation shielding applications: The project aims to create boron-nitride ceramics to shield against harmful space radiation. It's led by Robert Vajtai and Abhijit Biswas.

Earlier this year, Alexander was named to the first-ever Texas Aerospace Research and Space Economy Consortium Executive Committee, part of the new Texas Space Commission. TARSEC is composed of representatives of each higher education institution in the state and aims to ensure that Texas remains a "powerhouse" in the space industry, Lieutenant Governor Dan Patrick said in a release.

Meanwhile, The Translational Research Institute for Space Health, or TRISH, which is part of BCM’s Center for Space Medicine, announced plans to launch six more experiments into space this year, focused on topics ranging from motion sickness to genome alterations during space travel.
Earlier this month, TRISH announced the initial selection for its Space Health Ingress Program (SHIP) solicitation. Photo via BCM.edu

Houston organization selects research on future foods in space health to receive $1M in funding

research and development

What would we eat if we were forced to decamp to another planet? The most immediate challenges faced by the food industry and astronauts exploring outside Earth are being addressed by The Translational Research Institute for Space Health (TRISH) at Baylor College of Medicine’s Center for Space Medicine’s newest project.

Earlier this month, TRISH announced the initial selection for its Space Health Ingress Program (SHIP) solicitation. Working with California Institute of Technology and Massachusetts Institute of Technology, the Baylor-based program chose “Future Foods for Space: Mobilizing the Future Foods Community to Accelerate Advances in Space Health,” led by Dr. Denneal Jamison-McClung at the University of California, Davis.

“TRISH is bringing in new ideas and investigators to propel space health research,” says Catherine Domingo, TRISH operations lead and research administration associate at Baylor College of Medicine, in the release. “We have long believed that new researchers with fresh perspectives drive innovation and advance human space exploration and SHIP builds on TRISH’s existing efforts to recruit and support new investigators in the space health research field, potentially yielding and high-impact ideas to protect space explorers.”

The goal of the project is to develop sustainable food products and ingredients that could fuel future space travelers on long-term voyages, or even habitation beyond our home planet.

Jamison-McClung and her team’s goal is to enact food-related space health research and inspire the community thereof by mobilizing academic and food-industry researchers who have not previously engaged with the realm of space exploration. Besides growing and developing food products, the project will also address production, storage, and delivery of the nutrition created by the team.

To that end, Jamison-McClung and her recruits will receive $1 million over the course of two years. The goal of the SHIP solicitation is to work with first-time NASA investigators, bringing new minds to the forefront of the space health research world.

“As we look to enable safer space exploration and habitation for humans, it is clear that food and nutrition are foundational,” says Dr. Asha S. Collins, chair of the SHIP advisory board, in a press release. “We’re excited to see how accelerating innovation in food science for space health could also result in food-related innovations for people on Earth in remote areas and food deserts.”

The human body undergoes specific challenges in space. A new film from TRISH explains the unique phenomenon and how research is helping to improve human life in space. Photo courtesy of NASA

Houston-based organization premieres space health tech documentary

watch now

A Houston space health organization has launched a film that is available to anyone interested in how space affects the human body.

The Translational Research Institute for Space Health, or TRISH, which is housed out of Baylor College of Medicine in consortium with Caltech and the Massachusetts Institute of Technology, announced a new documentary — “Space Health: Surviving in the Final Frontier.” The film, which covers how space affects humans both physically and mentally. It's free to watch online.

“This documentary provides an unprecedented look into the challenges – physical and mental – facing space explorers and the types of innovative research that TRISH supports to address these challenges,” says Dr. Dorit Donoviel, TRISH executive director and associate professor in Baylor’s Center for Space Medicine, in a news release. “We hope the film inspires students and researchers alike to see how their work could one day soon improve the lives of human explorers.”

The documentary interviews a wide range of experts — scientists, flight surgeons, astronauts, etc. — about all topics related to health, like food, medicine, radiation, isolation, and more. Some names you'll see on the screen include:

     
  • Former NASA astronaut Nicole Stott
  • Active NASA astronaut Victor Glover
  • NASA Associate Administrator Kathy Lueders
  • Inspiration4 Commander Jared Issacman
  • TRISH-funded researchers Level Ex CEO Sam Glassenberg and Holobiome CEO Philip Strandwitz

“Understanding and solving the challenges that face humans in space is critical work,” says Dr. Jennifer Fogarty, TRISH chief scientific officer, in the release. “Not only does space health research aim to unlock new realms of possibility for human space exploration, but it also furthers our ability to innovate on earth, providing insights for healthcare at home.”

TRISH is funded by NASA’s Human Research Program and seeks both early stage and translation-ready research and technology to protect and improve the health and performance of space explorers. This film was enabled by a collaboration with NASA and HRP.

James Hury joins the Houston Innovators Podcast to discuss the role of the Translational Research Institute for Space Health. Photo courtesy of TRISH

Houston innovator talks space health and the future of the commercial sector

houston innovators podcast episode 102

Only about 500 humans have made it to space, which, from a research perspective, isn't a large data set. Yet as commercial space exploration continues and more people make it up into space, new opportunities for space health research are being made available.

"If you look at all the people who have gone into space, they've mostly been employees of nations — astronauts from different governments," says James Hury of the Translational Research Institute for Space Health on this week's episode of the Houston Innovators Podcast. "We're going to start to get people from all different ages and backgrounds."

Hury is the deputy director and chief innovation officer for Houston-based TRISH, and he's focused on identifying space tech and research ahead of the market that has the potential to impact human health in space. From devices that allow astronauts to perform remote health care on themselves to addressing behavioral health challenges, TRISH is supporting the future of space health.

The organization, which is housed out of Baylor College of Medicine and supported by NASA, has a major role to play in the future of space. The Federal Aviation Administration released new space travel regulations that require travelers to contribute something to society. One way to check that box is to collaborate with TRISH on its research.

"If you are willing to go and help participate in experimentation and research endeavors, then you are helping to gain knowledge for all of humankind," Hury says of future space travelers willing to pay tens of millions of dollars to go to space.

TRISH has stood up the first commercial spaceflight medical research program to work with commercial spaceflight crews to bring back crucial research to one database. Called EXPAND — Enhancing eXploration Platforms and Analog Definition — the new collaborative program is meant to address the challenges that humans face on space missions — early detection and treatment of medical conditions, protection from radiation, mental health, team dynamics, and more.

The human aspect of space exploration has always been at the core of Houston's space industry. And this isn't going to change as commercialization within the sector continues.

"I think we'll be Space City forever," Hury says on the show. "We have a whole lot of expertise here that can support this new economy."

He shares more on the future of space health and Houston's role in space exploration on the episode. Listen to the full interview below — or wherever you stream your podcasts — and subscribe for weekly episodes.


The new program will work with commercial spaceflight crews to bring back crucial research to one database. Photo via NASA/Unsplash

Houston organization launches the first commercial spaceflight medical research program

out of this world health care

With commercial space activity reaching cruising altitude, a Houston space health research organization has introduced a new program to create a centralized database.

The Translational Research Institute for Space Health, or TRISH, at Baylor College of Medicine announced a unique program that will work with commercial spaceflight providers and their passengers. The EXPAND — Enhancing eXploration Platforms and Analog Definition — Program will collect information and data from multiple space flights and organize it in one place. TRISH selected TrialX to build the centralized database.

As a partner to the NASA Human Research Program, the Houston-based organization's mission is to reduce health risks for astronauts and uncover advances for terrestrial healthcare, according to a news release.

"The space environment causes rapid body changes. This can help us understand how we humans react to and overcome stress. Ensuring that space explorers remain healthy pushes us to invent new approaches for early detection and prevention of medical conditions," says Dorit Donoviel, executive director at TRISH, in the release. "Studying a broad range of people in space increases our knowledge of human biology. TRISH's EXPAND program will leverage opportunities with commercial spaceflight providers and their willing crew to open up new research horizons."

The new collaborative program is meant to address the challenges that humans face on space missions — early detection and treatment of medical conditions, protection from radiation, mental health, team dynamics, and more. TRISH has been working on these challenges since its inception.

"This ground-breaking research model is only possible because everyone — scientists, commercial spaceflight companies, and passengers - recognizes the importance of space health research, and what we can learn by working together," says Dr. Emmanuel Urquieta, TRISH's chief medical officer, in the release.

EXPAND's first collaboration is the Inspiration4 mission, which is launching on September 15. The all-civilian crew will perform a variety of TRISH-supported human health experiments during their time in orbit.

"Shorter commercial space flights like Inspiration4 have similarities to early NASA Artemis missions," says Jimmy Wu, TRISH's senior biomedical engineer. "This allows TRISH an opportunity to test new health and performance technologies for future NASA astronauts."

The potential impact of innovation with this new centralized database and biobank is profound, says James Hury, TRISH's deputy director and chief innovation officer.

"The EXPAND database has the flexibility to seamlessly take in multiple types of data from different flight providers in order to create a repository that can integrate information," says Hury in the release. "A centralized, standardized research database and biobank will increase access to knowledge about human health for the global research community."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University professor earns $550k NSF award for wearable imaging tech​

science supported

Another Houston scientist has won one of the highly competitive National Science Foundation (NSF) CAREER Awards.

Lei Li, an assistant professor of electrical and computer engineering at Rice University, has received a $550,000, five-year grant to develop wearable, hospital-grade medical imaging technology capable of visualizing deep tissue function in real-time, according to the NSF. The CAREER grants are given to "early career faculty members who demonstrate the potential to serve as academic models and leaders in research and education."

“This is about giving people access to powerful diagnostic tools that were once confined to hospitals,” Li said in a news release from Rice. “If we can make imaging affordable, wearable and continuous, we can catch disease earlier and treat it more effectively.”

Li’s research focuses on photoacoustic imaging, which merges light and sound to produce high-resolution images of structures deep inside the body. It relies on pulses of laser light that are absorbed by tissue, leading to a rapid temperature rise. During this process, the heat causes the tissue to expand by a fraction, generating ultrasound waves that travel back to the surface and are detected and converted into an image. The process is known to yield more detailed images without dyes or contrast agents used in some traditional ultrasounds.

However, current photoacoustic systems tend to use a variety of sensors, making them bulky, expensive and impractical. Li and his team are taking a different approach.

Instead of using hundreds of separate sensors, Li and his researchers are developing a method that allows a single sensor to capture the same information via a specially designed encoder. The encoder assigns a unique spatiotemporal signature to each incoming sound wave. A reconstruction algorithm then interprets and decodes the signals.

These advances have the potential to lower the size, cost and power consumption of imaging systems. The researchers believe the device could be used in telemedicine, remote diagnostics and real-time disease monitoring. Li’s lab will also collaborate with clinicians to explore how the miniaturized technology could help monitor cancer treatment and other conditions.

“Reducing the number of detection channels from hundreds to one could shrink these devices from bench-top systems into compact, energy-efficient wearables,” Li said in the release. “That opens the door to continuous health monitoring in daily life—not just in hospitals.”

Amanda Marciel, the William Marsh Rice Trustee Chair of chemical and biomolecular engineering and an assistant professor at Rice, received an NSF CAREER Award last year. Read more here.

Houston Spaceport launches $12M expansion for leading space tech co.

to the moon

Houston will get one step closer to the moon, as the Houston Spaceport at Ellington Airport (EFD) has announced an expansion of the lease for Intuitive Machines, the Houston space tech leader dedicated to furthering lunar exploration.

On July 15, the City of Houston announced passage of Amendment 1, which would add three acres of commercial space for Intuitive Machines at the spaceport and a $12 million infrastructure expansion. Approved by the city council and Mayor John Whitmire, the expansion will include new production, testing and support facilities. The amendment extends the current lease for Intuitive Machines from 20 years to 25 years.

"I want to shout out to Intuitive Machines about everything they’re doing at the Houston Spaceport. It’s exciting to see them expand. We’re starting to reach a critical mass out there — more and more aerospace companies want to be at the Spaceport because that’s where innovation is happening,” said Fred Flinkinger, who represents District E on the Houston City Council. “It’s a great sign of momentum, and we’re proud to have them here in Houston."

Intuitive Machines was the first commercial tenant for the Houston Spaceport when it moved into the facility in August 2016. Founded by Stephen Altemus, Kam Ghaffarian, and Tim Crain in 2013, the company holds three contracts with the National Aeronautics and Space Administration (NASA) to deliver payloads to the lunar surface. In 2023, the company opened its doors in Houston with a 105,572-square-foot Lunar Production and Operations Center that contains research and development labs, clean rooms, mission control centers, and a spacecraft assembly floor.


Intuitive Machines landed Odysseus on the moon in February 2024, the first privately owned soft lunar landing ever and the first soft landing since 1972.

The Houston Spaceport is owned and operated by the City of Houston and Houston Airports, who have an eye of keeping the city a prime name in space exploration. As "Houston" was the first word spoken on the moon when Apollo 11 landed in 1969, lunar exploration in particular has a soft place in the heart of the metropolis formerly known as Space City.

“This agreement reinforces Houston’s leadership in space innovation,” said Jim Szczesniak, director of aviation for Houston Airports. “We’re building infrastructure and supporting the next era of lunar and deep space exploration, right here at Houston Spaceport. This partnership represents the forward-thinking development that fuels job creation and drives long-term economic growth.”

Houston hardtech accelerator names 8 scientists to 2025 cohort

ready, set, activate

National hardtech-focused organization Activate has named its 2025 cohort of scientists, which includes new members to Activate Houston.

The Houston hub was introduced last year, and joins others in Boston, New York, and Berkley, California—where Activate is headquartered. The organization also offers a virtual and remote cohort, known as Activate Anywhere. Collectively, the 2025 Activate Fellowship consists of 47 scientists and engineers from nine U.S. states.

This year's cohort comprises subject matter experts across various fields, including quantum, robotics, biology, agriculture, energy and direct air capture.

Activate aims to support scientists at "the outset of their entrepreneurial journey." It partners with U.S.-based funders and research institutions to support its fellows in developing high-impact technology. The fellows receive a living stipend, connections from Activate's robust network of mentors and access to a curriculum specific to the program for two years.

“Science entrepreneurship is the origin story of tomorrow’s industries,” Cyrus Wadia, CEO of Activate, said in an announcement. “The U.S. has long been a world center for science leadership and technological advancement. When it comes to solving the world’s biggest challenges, hard-tech innovation is how we unlock the best solutions. From infrastructure to energy to agriculture, these Activate Fellows are the bold thinkers who are building the next generation of science-focused companies to lead us into the future.”

The Houston fellows selected for the 2025 class include:

  • Jonathan Bessette, founder and CEO of KIRA, which uses its adaptive electrodialysis system to treat diverse water sources and reduce CO2 emissions
  • Victoria Coll Araoz, co-founder and chief science officer of Florida-based SEMION, an agricultural technology company developing pest control strategies by restoring crops' natural defenses
  • Eugene Chung, co-founder and CEO of Lift Biolabs, a biomanufacturing company developing low-cost, nanobubble-based purification reagents. Chung is completing his Ph.D. in bioengineering at Rice University.
  • Isaac Ju, co-founder of EarthFlow AI, which has developed an AI-powered platform for subsurface modeling, enabling the rapid scaling of carbon storage, geothermal energy and lithium extraction
  • Junho Lee, principal geotechnical engineer of Houston-based Deep Anchor Solutions, a startup developing innovative anchoring systems for floating renewables and offshore infrastructure
  • Sotiria (Iria) Mostrou, principal inventor at Houston-based Biosimo Chemicals, a chemical engineering startup that develops and operates processes to produce bio-based platform chemicals
  • Becca Segel, CEO and founder of Pittsburgh-based FlowCellutions, which prevents power outages for critical infrastructure such as hospitals, data centers and the grid through predictive battery diagnostics
  • Joshua Yang, CEO and co‑founder of Cambridge, Massachusetts-based Brightlight Photonics, which develops chip-scale titanium: sapphire lasers to bring cost-effective, lab-grade performance to quantum technologies, diagnostics and advanced manufacturing

The program, led locally by Houston Managing Director Jeremy Pitts, has supported 296 Activate fellows since the organization was founded in 2015. Members have gone on to raise roughly $4 billion in follow-on funding, according to Activate's website.

Activate officially named its Houston office in the Ion last year.

Charlie Childs, co-founder and CEO of Intero Biosystems, which won both the top-place finish and the largest total investment at this year's Rice Business Plan Competition, was named to the Activate Anywhere cohort. Read more about the Boston, New York, Berkley and Activate Anywhere cohorts here.