Mario Romero is an engineer for Intuitive Machines and a former Navy SEAL. He credits his successes in STEM to second—and third—chances. Photo via LinkedIn

Mario Romero is an assembly, integration, and test engineer at the innovative Houston aerospace company Intuitive Machines. He previously served as a Navy SEAL and an EVA Flight Simulator Specialist at NASA.

Intuitive Machines landed its IM-2 mission on the moon last month, before calling an early end of mission. The company reported that its lunar lander was on its side, preventing it from completing the mission as planned.

Still, the IM-2 mission landed closer to the lunar South Pole than any previous lander, according to NASA. And the company still has plenty of innovative projects in the works.

The company secured about $2.5 million from NASA to study challenges related to carrying cargo on the company’s lunar lander and hauling cargo on the moon. The lander will be used for NASA’s Artemis missions to the moon and eventually to Mars.

“Someone has to do it; in fact, the more the merrier,” Romero says on being part of an innovative culture.

“Competition forces innovation, and if I can be selfish for a moment, I think it’s of particular importance for Intuitive Machines because my extremely capable team is more than worthy of having their place stamped in history. We, as a species, have to strive to become a multiplanetary species. Incidentally, part of the trickle-down effect of innovation often leads to spin-off technology that in some way benefits humanity here on Earth.”

Last year, Romero was awarded the key to the city from his hometown of Vineland, New Jersey, and made it a point in his speech to give kids a chance to succeed in the future.

“I am the product of many chances, secondary, tertiary, and more, given to me,” Romero says. “Many of these were admittedly entirely undeserving. I look back now and recognize that those teachers, judges, police, etc. might have all seen something in me that I couldn’t then see in myself. … This is precisely why I often emphasize giving kids multiple chances. Kids are kids, and you can never fully know how you’re inspiring them in the moment, nor how the chances that you give them will affect the trajectory of their lives.”

Texas is expected to represent nearly 10 percent of future STEM opportunities in the nation, and nine of the 20 biggest employers in Texas are STEM-related.

As STEM has become increasingly popular in high schools and at the university level, and the aerospace industry continues to innovate, it is possible that many young future innovators may take the same path a young Romero did.

“I think it’s natural that when new leaps are made in the STEM fields, and in the aerospace realm at large, the youth in general become galvanized by it,” Romero says.

“It’s exciting and reinvigorating to understand that humanity is on the cusp of the next great adventure. As fantastic and essential as this is, I want to emphasize the importance of the arts as well. It has an important place and an important role to play in our evolution, so I personally don’t limit youthful interest to STEM alone. There are fantastic works of art awaiting us, in all their variety, that will come as a result of the efforts and innovation.”

Intuitive Machines touched down on the moon on March 6. Photo courtesy of Intuitive Machines

Houston space tech co.'s lunar lander touches down on moon — condition unknown

Lunar Landing

A privately owned lunar lander touched down on the moon Thursday, but as the minutes dragged on, flight controllers could not confirm its condition or whether it was even upright near the south pole.

The last time Intuitive Machines landed a spacecraft on the moon, a year ago, it ended up sideways.

The company's newest Athena lander dropped out of lunar orbit as planned, carrying an ice drill, a drone and two rovers for NASA and others. The hourlong descent appeared to go well, but it took a while for Mission Control to confirm touchdown.

“We're on the surface,” reported mission director and co-founder Tim Crain. A few minutes later, he repeated, "It looks like we're down ... We are working to evaluate exactly what our orientation is on the surface.”

Launched last week, Athena was communicating with controllers more than 230,000 miles away and generating solar power, officials said. But nearly a half-hour after touchdown, Crain and his team still were unable to confirm if everything was all right with the 15-foot lander. NASA and Intuitive Machines abruptly ended their live webcast, promising more updates at a news conference later in the afternoon.

“OK team, keep working the problem," Crain urged.

Intuitive Machines last year put the U.S. back on the moon despite its lander tipping on its side.

Another U.S. company Firefly Aerospace on Sunday became the first to achieve complete success with its commercial lunar lander. A vacuum already has collected lunar dirt for analysis and a dust shield has shaken off the abrasive particles that cling to everything.

Intuitive Machines was aiming this time for a mountain plateau just 100 miles from the south pole, much closer than before.

This week's back-to-back moon landings are part of NASA’s commercial lunar delivery program meant to get the space agency’s experiments to the gray, dusty surface and jumpstart business. The commercial landers are also seen as scouts for the astronauts who will follow later this decade under NASA's Artemis program, the successor to Apollo.

NASA officials said before the landing that they knew going in that some of the low-cost missions would fail. But with more private missions to the moon, that increased the number of experiments getting there.

NASA spent tens of millions of dollars on the ice drill and two other instruments riding on Athena, and paid an additional $62 million for the lift. Most of the experiments were from private companies, including the two rovers. The rocket-powered drone came from Intuitive Machines — it's meant to hop into a permanently shadowed crater near the landing site in search of frozen water.

Intuitive Machines' Trent Martin said before the flight that Athena needed to land upright in order for the drone and rovers to deploy.

To lower costs even more, Intuitive Machines shared its SpaceX rocket launch with three spacecraft that went their separate ways. Two of them — NASA’s Lunar Trailblazer and AstroForge’s asteroid-chasing Odin — are in jeopardy.

NASA said this week that Lunar Trailblazer is spinning without radio contact and won’t reach its intended orbit around the moon for science observations. Odin is also silent, with its planned asteroid flyby unlikely.

As for Athena, Intuitive Machines made dozens of repairs and upgrades following the company’s sideways touchdown by its first lander. It still managed to operate briefly, ending America’s moon-landing drought of more than 50 years.

Until then, the U.S. had not landed on the moon since Apollo 17 in 1972. No one else has sent astronauts to the moon, the overriding goal of NASA’s Artemis program. And only four other countries have successfully landed robotic spacecraft on the moon: Russia, China, India and Japan.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston hardtech accelerator names 8 scientists to 2025 cohort

ready, set, activate

National hardtech-focused organization Activate has named its 2025 cohort of scientists, which includes new members to Activate Houston.

The Houston hub was introduced last year, and joins others in Boston, New York, and Berkley, California—where Activate is headquartered. The organization also offers a virtual and remote cohort, known as Activate Anywhere. Collectively, the 2025 Activate Fellowship consists of 47 scientists and engineers from nine U.S. states.

This year's cohort comprises subject matter experts across various fields, including quantum, robotics, biology, agriculture, energy and direct air capture.

Activate aims to support scientists at "the outset of their entrepreneurial journey." It partners with U.S.-based funders and research institutions to support its fellows in developing high-impact technology. The fellows receive a living stipend, connections from Activate's robust network of mentors and access to a curriculum specific to the program for two years.

“Science entrepreneurship is the origin story of tomorrow’s industries,” Cyrus Wadia, CEO of Activate, said in an announcement. “The U.S. has long been a world center for science leadership and technological advancement. When it comes to solving the world’s biggest challenges, hard-tech innovation is how we unlock the best solutions. From infrastructure to energy to agriculture, these Activate Fellows are the bold thinkers who are building the next generation of science-focused companies to lead us into the future.”

The Houston fellows selected for the 2025 class include:

  • Jonathan Bessette, founder and CEO of KIRA, which uses its adaptive electrodialysis system to treat diverse water sources and reduce CO2 emissions
  • Victoria Coll Araoz, co-founder and chief science officer of Florida-based SEMION, an agricultural technology company developing pest control strategies by restoring crops' natural defenses
  • Eugene Chung, co-founder and CEO of Lift Biolabs, a biomanufacturing company developing low-cost, nanobubble-based purification reagents. Chung is completing his Ph.D. in bioengineering at Rice University.
  • Isaac Ju, co-founder of EarthFlow AI, which has developed an AI-powered platform for subsurface modeling, enabling the rapid scaling of carbon storage, geothermal energy and lithium extraction
  • Junho Lee, principal geotechnical engineer of Houston-based Deep Anchor Solutions, a startup developing innovative anchoring systems for floating renewables and offshore infrastructure
  • Sotiria (Iria) Mostrou, principal inventor at Houston-based Biosimo Chemicals, a chemical engineering startup that develops and operates processes to produce bio-based platform chemicals
  • Becca Segel, CEO and founder of Pittsburgh-based FlowCellutions, which prevents power outages for critical infrastructure such as hospitals, data centers and the grid through predictive battery diagnostics
  • Joshua Yang, CEO and co‑founder of Cambridge, Massachusetts-based Brightlight Photonics, which develops chip-scale titanium: sapphire lasers to bring cost-effective, lab-grade performance to quantum technologies, diagnostics and advanced manufacturing

The program, led locally by Houston Managing Director Jeremy Pitts, has supported 296 Activate fellows since the organization was founded in 2015. Members have gone on to raise roughly $4 billion in follow-on funding, according to Activate's website.

Activate officially named its Houston office in the Ion last year.

Charlie Childs, co-founder and CEO of Intero Biosystems, which won both the top-place finish and the largest total investment at this year's Rice Business Plan Competition, was named to the Activate Anywhere cohort. Read more about the Boston, New York, Berkley and Activate Anywhere cohorts here.

Houston team’s discovery brings solid-state batteries closer to EV use

A Better Battery

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape.

The team, led by Yan Yao, the Hugh Roy and Lillie Cranz Cullen Distinguished Professor of Electrical and Computer Engineering at UH, recently published its findings in the journal Nature Communications.

The work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

“This research solves a long-standing mystery about why solid-state batteries sometimes fail,” Yao, corresponding author of the study, said in a news release. “This discovery allows solid-state batteries to operate under lower pressure, which can reduce the need for bulky external casing and improve overall safety.”

A solid-state battery replaces liquid electrolytes found in conventional lithium-ion cells with a solid separator, according to Car and Driver. They also boast faster recharging capabilities, better safety and higher energy density.

However, when it comes to EVs, solid-state batteries are not ideal since they require high external stack pressure to stay intact while operating.

Yao’s team learned that tiny empty spaces, or voids, form within the solid-state batteries and merge into a large gap, which causes them to fail. The team found that adding small amounts of alloying elements, like magnesium, can help close the voids and help the battery continue to function. The team captured it in real-time with high-resolution videos that showed what happens inside a battery while it’s working under a scanning electron microscope.

“By carefully adjusting the battery’s chemistry, we can significantly lower the pressure needed to keep it stable,” Lihong Zhao, the first author of this work, a former postdoctoral researcher in Yao’s lab and now an assistant professor of electrical and computer engineering at UH, said in the release. “This breakthrough brings solid-state batteries much closer to being ready for real-world EV applications.”

The team says it plans to build on the alloy concept and explore other metals that could improve battery performance in the future.

“It’s about making future energy storage more reliable for everyone,” Zhao added.

The research was supported by the U.S. Department of Energy’s Battery 500 Consortium under the Vehicle Technologies Program. Other contributors were Min Feng from Brown; Chaoshan Wu, Liqun Guo, Zhaoyang Chen, Samprash Risal and Zheng Fan from UH; and Qing Ai and Jun Lou from Rice.

---

This article originally appeared on EnergyCaptialHTX.com.

Rice biotech accelerator appoints 2 leading researchers to team

Launch Pad

The Rice Biotech Launch Pad, which is focused on expediting the translation of Rice University’s health and medical technology discoveries into cures, has named Amanda Nash and Kelsey L. Swingle to its leadership team.

Both are assistant professors in Rice’s Department of Bioengineering and will bring “valuable perspective” to the Houston-based accelerator, according to Rice. 

“Their deep understanding of both the scientific rigor required for successful innovation and the commercial strategies necessary to bring these technologies to market will be invaluable as we continue to build our portfolio of lifesaving medical technologies,” Omid Veiseh, faculty director of the Launch Pad, said in a news release.

Amanda Nash

Nash leads a research program focused on developing cell communication technologies to treat cancer, autoimmune diseases and aging. She previously trained as a management consultant at McKinsey & Co., where she specialized in business development, portfolio strategy and operational excellence for pharmaceutical and medtech companies. She earned her doctorate in bioengineering from Rice and helped develop implantable cytokine factories for the treatment of ovarian cancer. She holds a bachelor’s degree in biomedical engineering from the University of Houston.

“Returning to Rice represents a full-circle moment in my career, from conducting my doctoral research here to gaining strategic insights at McKinsey and now bringing that combined perspective back to advance Houston’s biotech ecosystem,” Nash said in the release. “The Launch Pad represents exactly the kind of translational bridge our industry needs. I look forward to helping researchers navigate the complex path from discovery to commercialization.”

Kelsey L. Swingle

Swingle’s research focuses on engineering lipid-based nanoparticle technologies for drug delivery to reproductive tissues, which includes the placenta. She completed her doctorate in bioengineering at the University of Pennsylvania, where she developed novel mRNA lipid nanoparticles for the treatment of preeclampsia. She received her bachelor’s degree in biomedical engineering from Case Western Reserve University and is a National Science Foundation Graduate Research Fellow.

“What draws me to the Rice Biotech Launch Pad is its commitment to addressing the most pressing unmet medical needs,” Swingle added in the release. “My research in women’s health has shown me how innovation at the intersection of biomaterials and medicine can tackle challenges that have been overlooked for far too long. I am thrilled to join a team that shares this vision of designing cutting-edge technologies to create meaningful impact for underserved patient populations.”

The Rice Biotech Launch Pad opened in 2023. It held the official launch and lab opening of RBL LLC, a biotech venture creation studio in May. Read more here.