Houston-based Soliton, which has created a technology that uses sound to treat cellulite and scars, has been acquired. Photo via soliton.com

A California company has acquired Houston-based Soliton as well as its innovative device that uses sound to eliminate cellulite.

Allergan Aesthetics, an AbbVie company, has announced an agreement to acquire Soliton and its rapid acoustic pulse device RESONICTM, which recently received U.S. Food and Drug Administration clearance for the treatment of cellulite.

The company's team first developed the basis of the tool for tattoo removal and earned FDA clearance for that treatment a few years ago. Christopher Capelli and Walter Klemp co-founded Soliton in 2012.

The acquisition will take Soliton's technology to the next level, says Klemp, who serves as the company's executive chairman.

"Allergan Aesthetics' brand recognition, global footprint, track record and commitment to developing best-in-class aesthetic treatments makes the Company ideally suited to maximize the commercial potential of the RESONICTM rapid acoustic pulse technology," Klemp says in the release.

"I am proud of the passion and accomplishments of the Soliton team and thankful for the ongoing support of our investors which have culminated in this transaction," he continues. "We look forward to working with Allergan Aesthetics to ensure a successful completion of this transaction."

For Carrie Strom, president of Global Allergan Aesthetics and senior vice president at AbbVie, Soliton's solution has a great potential in the market. Soliton's clinical trial data that was submitted to the FDA showed that after a single treatment session, RESONICTM demonstrated significant improvement and strong patient satisfaction with 92.9 percent of subjects agreeing or strongly agreeing their cellulite appeared improved, per the release.

"There is a huge unmet need to address cellulite and effective treatments have been elusive and frustrating for consumers," Strom says in the release. "Soliton's technology offers a new, completely non-invasive approach with clinically-proven results to reduce the appearance of cellulite with no patient downtime.

"The addition of this technology complements Allergan Aesthetics' portfolio of body contouring treatments," she continues. "Health care providers will now have another option to address consumers' aesthetic concerns."

Brad Hauser, CEO of Soliton, previously told InnovationMap that the company's plans for 2021 included focusing on the commercialization of their product and get it into the hands of dermatologists, plastic surgeons, and other medical professionals for 25 key accounts — potentially including ones Houston — with a plan for a national rollout in 2022.

This week's roundup of Houston innovators includes Richard Seline of the Resilience Innovation Hub, Deanna Zhang of Tudor, Pickering, and Holt, and Brad Hauser of Soliton. Courtesy photos

3 Houston innovators to know this week

who's who

Editor's note: In the week's roundup of Houston innovators to know, I'm introducing you to three innovators across industries recently making headlines — from resilience technology to energy innovation.

Richard Seline, co-founder at the Houston-based Resilience Innovation Hub Collaboratory

Richard Seline of Houston-based Resilience Innovation Hub joins the Houston Innovators Podcast to discuss how it's time for the world to see Houston as the resilient city it is. Photo courtesy of ResilientH20

Richard Seline says on this week's episode of the Houston Innovators Podcast, that people are exhausted and these feelings are festering into frustration and anger — and calling for change. The things that need to change, Seline says, includes growing investment and innovation in resilience solutions.

"As a fourth generation Houstonian, it's just so hard to see my hometown get hit persistently with a lot of these weather and other type of disasters," Seline says.

These unprecedented disasters — which are of course occurring beyond Houston and Texas — have also sparked a growing interest in change for insurance companies that have lost a trillion dollars on the United States Gulf Coast over the past seven years, Seline says. Something has got to change regarding preparation and damage mitigation. Read more and stream the podcast.

Deanna Zhang, director of energy technology at Houston-based Tudor, Pickering, Holt & Co.

Deanna Zhang of Tudor, Pickering, Holt & Co. writes a response to the energy crisis that occured in Texas in February. Photo courtesy of TPH

Deanna Zhang specializes in energy tech, and what she witnessed from February's winter weather was basically an epic fail caused by a myriad of issues.

"But it's oversimplifying to say that the only solution to preventing another situation like this is continued or increased reliance on the oil and gas industry," she writes in a guest article for InnovationMap. "What last week ultimately demonstrated was the multitude of technology solutions that needs to scale up to provide us with the best energy reliability and availability." Read more.

Brad Hauser, CEO of Soliton

Houston-based Soliton can use its audio pulse technology to erase scars, cellulite, and tattoos. Photo courtesy of Soliton

A Houston company has created a technology that uses sound to make changes in human skin tissue. Soliton, led by Brad Hauser, is using audio pulses to make waves in the med-aesthetic industry. The company, which is licensed from the University of Texas on behalf of MD Anderson, announced that it had received FDA approval earlier this month for its novel and proprietary technology that can reduce the appearance of cellulite.

"The original indication was tattoo removal," Hauser says. "The sound wave can increase in speed whenever it hits a stiffer or denser material. And tattoo ink is denser, stiffer than the surrounding dermis. That allows a shearing effect of the sound wave to disrupt that tattoo ink and help clear tattoos."

According to Hauser, the team then turned to a second application for the technology in the short-term improvement in the appearance of cellulite. With the use of the technology, patients can undergo a relatively pain-free, 40- to 60-minute non-invasive session with no recovery time. Read more.

Houston-based Soliton can use its audio pulse technology to erase scars, cellulite, and tattoos. Photo via soliton.com

Houston company receives FDA approval for tech that uses sound to blast away cellulite

Zip zap

Soliton, a Houston-based technology company, is using audio pulses to make waves in the med-aesthetic industry.

The company, which is licensed from the University of Texas on behalf of MD Anderson, announced that it had received FDA approval earlier this month for its novel and proprietary technology that can reduce the appearance of cellulite.

MIT engineer and doctor Christopher Capelli first developed the basis of the tool while he led the Office of Technology Based Ventures at M.D. Anderson.

Capelli uncovered that he could remove tattoos more effectively by treating the skin with up to 100 waves per second (about five to 10 times greater than other devices on the market), giving birth to the company's proprietary Rapid Acoustic Pulse (RAP) platform.

In 2012 he formed Soliton with co-founder and entrepreneur Walter Klemp, who also founded Houston-based Moleculin, and later brought on Brad Hauser as CEO. By 2019, the company had received FDA approval for using the technology for tattoo removal.

"The original indication was tattoo removal, which is what Chris envisioned," Hauser says. "The sound wave can increase in speed whenever it hits a stiffer or denser material. And tattoo ink is denser, stiffer than the surrounding dermis. That allows a shearing effect of the sound wave to disrupt that tattoo ink and help clear tattoos."

According to Hauser, the team then turned to a second application for the technology in the short-term improvement in the appearance of cellulite. With the use of the technology, patients can undergo a relatively pain-free, 40- to 60-minute non-invasive session with no recovery time.

Brad Hauser is the CEO of Soliton. Photo courtesy of Soliton

"It works similarly in the fibrous septa, which are the tethered bands that create the dimples and cellulite and the uneven skin. Those are stiffer than the surrounding fat cells in the subcutaneous tissue," Hauser says. "That allows the technology to disrupt those fibrous septa and loosen and release the dimples."

In 2021 the company plans to commercialize their product and get it into the hands of dermatologists, plastic surgeons, and other medical professionals for 25 key accounts—potentially including ones Houston—with a plan for a national rollout in 2022.

And they don't plan to stop there.

The company has already announced a partnership for a proof-of-concept study with the U.S. Navy in which Soliton will aim to use its technology to reduce the visibility of fibrotic scars, and more importantly work to increase mobility or playability of scars.

"Often the scar ends up causing restrictions in motion and discomfort with pressure of even clothing and certainly with sleeping," Hauser says. "We believe based on the reduction in volume and the increase in playability that we saw in our original proof-of-concept study that we will be able to bring benefits to these military patients."

Work on the study is slated to begin in the first half of this year.

In the meantime, the company is making headway with treatment of liver fibrosis, announcing just this week that it's pre-clinical study in animals demonstrated positive results and a reduction in effects by 42 percent seven days after the completion of carbon tetrachloride (CCL4) induction. The RAP technology was also named the best new technology by the Aesthetic Industry Association earlier this month.

"It's really targeting collagen fiber and fibroblasts on a cellular level" Hauser says. "Which we think has numerous potential uses in the future."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”