Eli Lilly is expected to bring a $6.5 billion manufacturing facility to Houston by 2030. Rendering courtesy Greater Houston Partnership.

Pharmaceutical giant Eli Lilly and Co. plans to build a $6.5 billion manufacturing plant at Houston’s Generation Park. More than 300 locations in the U.S. competed for the factory.

The Houston site will be the first major pharmaceutical manufacturing plant in Texas, according to the Greater Houston Partnership.

Lilly said it plans to hire 615 full-time workers for the 236-acre plant, including engineers, scientists and lab technicians. The company will collaborate with local colleges and universities to help build its talent pipeline.

The plant will also generate an estimated 4,000 construction jobs.

Lilly said every dollar it spends in the Houston area will contribute an additional $4 to the local economy.

“This is a transformative moment for the Houston region and our life sciences industry,” Steve Kean, president and CEO of the Greater Houston Partnership, said in a release. “The Lilly project represents one of the largest for-profit life sciences investments in Texas history and is a powerful endorsement of Houston’s growing position as a global hub for innovation, advanced manufacturing, and biomedical excellence.”

The factory, expected to go online by 2030, will make small-molecule medicines for fields such as oncology, immunology and neuroscience. Perhaps most notably, the site will manufacture orforglipron, Lilly's first oral small-molecule GLP-1 medicine for treatment of obesity and type 2 diabetes. The drug is currently undergoing clinical trials.

“Our new Houston site will enhance Lilly’s ability to manufacture orforglipron at scale and, if approved, help fulfill the medicine’s potential as a metabolic health treatment for tens of millions of people worldwide who prefer the ease of a pill that can be taken without food and water restrictions,” David Ricks, chairman and CEO of Lilly, said in a release.

The company said it chose Generation Park, a 4,300-acre, master-planned commercial district near Lake Houston, because of factors such as financial incentives, access to utilities and transportation, and the region’s business-friendly environment. Generation Park is home to campuses for San Jacinto College and Lone Star College.

The plant will be outfitted with machine learning, AI, advanced data analytics, digital automation, and similar tools to streamline operations, Lilly said.

Intuitive Machines, Rhodium Scientific and San Jacinto College will partner to train future workers for space-based pharma recovery. Photo courtesy Intuitive Machines.

Intuitive Machines partners with Houston college for workforce training

space training

Intuitive Machines, a Houston-based space technology, infrastructure and services company, has forged a partnership with San Jacinto College to develop a program for training workers to handle biopharmaceutical materials delivered to Earth on Intuitive Machines’ re-entry vehicle.

Intuitive Machines is working with biotech company Rhodium Scientific on the project. Rhodium, also based in Houston, is developing biomanufacturing payloads for Intuitive Machines’ re-entry vehicle.

“Delivering life-improving pharmaceuticals from orbit is only valuable with reliable recovery and processes on Earth,” Tim Crain, chief technology officer at Intuitive Machines, said in a news release. “That requires more than a spacecraft — it demands the workforce, facilities, and regulatory alignment to support safe, repeatable operations. San Jacinto College has the credibility and technical depth to make this vision a reality.”

San Jacinto College provides training certified by the National Institute for Bioprocessing Research and Training. Christopher Wild, assistant vice chancellor and vice president of biotechnology at San Jacinto College, said that with this certification and the college’s presence at Houston Spaceport, the school “is uniquely positioned to train the workforce needed (for) commercial space-based pharma recovery.”

The first-phase grant supporting Intuitive Machines’ Earth re-entry program will culminate in a full-scale mockup tailored to real payloads and use cases in early 2026.

Intuitive Machines said the collaborations with San Jacinto College and Rhodium “aim to align future landing infrastructure, research opportunities, and funding pathways that deliver lasting economic impact from space.”

The five-year grant from NASA will go toward creating the NASA MIRO Inflatable Deployable Environments and Adaptive Space Systems Center at UH. Photo via UH.edu

Houston college lands $5M NASA grant to launch new aerospace research center

to infinity and beyond

The University of Houston was one of seven minority-serving institutions to receive a nearly $5 million grant this month to support aerospace research focused on extending human presence on the moon and Mars.

The $4,996,136 grant over five years is funded by the NASA Office of STEM Engagement Minority University Research and Education Project (MUREP) Institutional Research Opportunity (MIRO) program. It will go toward creating the NASA MIRO Inflatable Deployable Environments and Adaptive Space Systems (IDEAS2) Center at UH, according to a statement from the university.

“The vision of the IDEAS2 Center is to become a premier national innovation hub that propels NASA-centric, state-of-the-art research and promotes 21st-century aerospace education,” Karolos Grigoriadis, Moores Professor of Mechanical Engineering and director of aerospace engineering at UH, said in a statement.

Another goal of the grant is to develop the next generation of aerospace professionals.

Graduate, undergraduate and even middle and high school students will conduct research out of IDEAS2 and work closely with the Johnson Space Center, located in the Houston area.

The center will collaborate with Texas A&M University, Houston Community College, San Jacinto College and Stanford University.

Grigoriadis will lead the center. Dimitris Lagoudas, from Texas A&M University, and Olga Bannova, UH's research professor of Mechanical Engineering and director of the Space Architecture graduate program, will serve as associate directors.

"Our mission is to establish a sustainable nexus of excellence in aerospace engineering research and education supported by targeted multi-institutional collaborations, strategic partnerships and diverse educational initiatives,” Grigoriadis said.

Industrial partners include Boeing, Axiom Space, Bastion Technologies and Lockheed Martin, according to UH.

UH is part of 21 higher-education institutions to receive about $45 million through NASA MUREP grants.

According to NASA, the six other universities to received about $5 million MIRO grants over five years and their projects includes:

  • Alaska Pacific University in Anchorage: Alaska Pacific University Microplastics Research and Education Center
  • California State University in Fullerton: SpaceIgnite Center for Advanced Research-Education in Combustion
  • City University of New York, Hunter College in New York: NASA-Hunter College Center for Advanced Energy Storage for Space
  • Florida Agricultural and Mechanical University in Tallahassee: Integrative Space Additive Manufacturing: Opportunities for Workforce-Development in NASA Related Materials Research and Education
  • New Jersey Institute of Technology in Newark:AI Powered Solar Eruption Center of Excellence in Research and Education
  • University of Illinois in Chicago: Center for In-Space Manufacturing: Recycling and Regolith Processing

Fourteen other institutions will receive up to $750,000 each over the course of a three-year period. Those include:

  • University of Mississippi
  • University of Alabama in Huntsville
  • Louisiana State University in Baton Rouge
  • West Virginia University in Morgantown
  • University of Puerto Rico in San Juan
  • Desert Research Institute, Reno, Nevada
  • Oklahoma State University in Stillwater
  • Iowa State University in Ames
  • University of Alaska Fairbanks in Fairbanks
  • University of the Virgin Islands in Charlotte Amalie
  • University of Hawaii at Manoa in Honolulu
  • University of Idaho in Moscow
  • University of Arkansas in Little Rock
  • South Dakota School of Mines and Technology in Rapid City
  • Satellite Datastreams

NASA's MUREP hosted its annual "Space Tank" pitch event at Space Center Houston last month. Teams from across the country — including three Texas teams — pitched business plans based on NASA-originated technology. Click here to learn more about the seven finalists.

The next phase of the Houston Spaceport will build out connectivity and workforce training. Rendering via Houston Airports

Houston Spaceport takes off with second phase of development

ready for liftoff

Since the Houston Spaceport secured the 10th FAA-Licensed commercial spaceport designation in 2015, the development's tenants have gone on to secure billions in NASA contracts. Now, the Houston Spaceport is on to its next phase of growth.

“Reflecting on its meteoric rise, the Spaceport has seen remarkable growth in a short span of time. From concepts on paper to the opening of Axiom Space, Collins Aerospace, and Intuitive Machines, the journey has been nothing short of extraordinary,” says Arturo Machuca, director of Ellington Airport and the Houston Spaceport, in a news release. “These anchor tenants, collectively holding about $5 billion in contracts with NASA and other notable aerospace companies, are not just shaping the future of space exploration but injecting vitality into Houston’s economy.”

The next phase of development, according to Houston Airports, will include:

  • The construction of a taxiway to connect Ellington Airport and the Spaceport
  • The construction of a roadway linking Phase 1 infrastructure to Highway 3
  • The expansion of the EDGE Center, in partnership with San Jacinto College

Rendering via Houston Airports

The Houston Spaceport's first phase completed in 2019. Over the past few years, tenants delivered on their own buildouts. Last year, Intuitive Machines moved into its new $40 million headquarters and Axiom Space opened its test facility. In 2022, Collins Aerospace cut the ribbon on its new 120,000 square-foot facility.

“The vision for the Houston Spaceport has always been ambitious,” says Jim Szczesniak, director of Aviation for Houston Airports. “Our vision is to create a hub for aviation and aerospace enterprises that will shape the future of commercial spaceflight.”

Educational partners have also revealed new spaces, including San Jacinto College's EDGE Center, which broke ground in July of 2019, finally celebrated its grand opening in 2021. Last year, Texas Southern University got the greenlight to operate an aeronautical training hub on a two-acre site at Ellington Airport.

“By providing the education and training needed to sustain jobs in the rapidly evolving space industry, the Spaceport is not only attracting companies but also nurturing the talent that will drive Houston's aerospace sector forward,” continues Szczesniak in the release.

San Jacinto College's new Center for Biotechnology at the Generation Park Campus is expected to be completed early next year. Photo courtesy of San Jacinto College

Houston-area college breaks ground on new biotechnology program, launches curriculum

coming soon

San Jacinto College and McCord Development Inc. broke ground on the new Center for Biotechnology at the Generation Park Campus in Northeast Houston.

The 4,000-square-foot, state-of-the-art facility is slated to allow for more hands-on training within simulated environments and will allow students to earn associate of applied science degrees in biomanufacturing technology, as well as credentials for those already in the workforce. It's scheduled to be completed in the first quarter of 2025.

“The Center and the overall components of the Biotechnology program will play a vital role in meeting the growing demand for skilled professionals in the biotechnology sector,” Brenda Hellyer, chancellor of San Jacinto College, says in a statement.

“We are committed to equipping our students with the skills and knowledge necessary for success in the dynamic biopharmaceutical industry," she continues. "Our vision is to not only meet the workforce needs of today but will also shape the future of biotechnology education and training in our region.”

San Jacinto College and McCord Development Inc. celebrated the groundbreaking of the new Center for Biotechnology at the Generation Park Campus in Northeast Houston. Photo courtesy of San Jacinto College

The new Center for Biotechnology curriculum is in partnership with the Ireland-based National Institute for Bioprocessing Research and Training. It is the only NIBRT-licensed training in the Southwest and Southeast region.

At the groundbreaking, San Jacinto College celebrated the ribbon-cutting for the Biomanufacturing Training Program at the South Campus, the first of the college's comprehensive biotechnology offerings.

The Biomanufacturing Training Program will be a customizable two-week hybrid program that combines theoretical teachings with hands-on experience.

“This program is designed to provide a seamless entry into the field for new professionals, with a focus on practical experience and exposure to industry practices,” Christopher Wild, executive director of San Jacinto College Center for Biotechnology, added in a statement.

The new center is part of Generation Park, a 4,300-acre master-planned development in Northeast Houston. In late 2022, San Jac and McCord, which is developing Generation Park, shared that they had signed a memorandum of understanding with the NIBRT to launch the program and center.

At the time, San Jacinto College was slated to be the institute’s sixth global partner and second U.S. partner.

Last summer, McCord also revealed plans for its 45-acre biomanufacturing campus at Generation Park.
Redemption Square in Generation Park will feature high-tech parking solution pilot program. Photo via generationpark.com

Houston developer to roll out innovative pilot to improve parking at major development

testing tech

Houston real estate company McCord Development will roll out an innovative 12-week pilot to learn how to make parking smarter at its master planned development Generation Park in Northeast Houston.

In partnership with Milwaukee-based CivicSmart Inc., a leader in Smart City parking, the company will test a new Internet-of-Things-based parking solution at Generation Park's mixed-use lifestyle center, Redemption Square. The program is only the second of its kind in the U.S., according to McCord.

McCord will install 30 of CivicSmart's solar powered bollards at Redemption Square that track real-time parking occupancy data through LTE license-plate-reading cameras. The data will be analyzed to help McCord optimize traffic and develop better strategies and parking rates.

"We are thrilled to introduce one of the first parking pilot programs in the country,” Ashwin Chandran, Director of Technology Innovation at McCord, said in a statement. “At McCord, we strive to measure and understand behavior in order to enhance the human experience and make efficient business decisions. We hope to use this data to improve the overall performance of our operations across all our assets.”

According to the statement, the intention of the program is to help keep curbside spots available for short-term guests.

From the customer perspective, parkers will pay via text or QR code, where they will enter their license plate number and payment information, which will be stored for subsequent visits.

The bollards can also dispatch up-to-the-minute pricing details to parkers, and can be controlled remotely by the developer to close certain parking spots for special events.

In addition to the 30 bollards, Redemption Square will still also offer free parking in its nearby garage, and other parking options on Redemption Square Road and metered spaces on Assay Street, according to the statement.

Last week, McCord also announced plans to create a 45-acre biomanufacturing campus within the 4,300-acre Generation Park development. Known as BioHub Two, the center will include 500,000 square feet for manufacturing, lab, and office space. It's slated to join San Jacinto College’s Biotech Training Center in the development, which was announced last December.

Other plans for Generation Park include two multifamily complexes, a mixed-use development called The Commons, and retail and green spaces.

McCord will install 30 of CivicSmart's solar powered bollards at Redemption Square that track real-time parking occupancy data through LTE license-plate-reading cameras. Photo courtesy of Generation Park

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Paraplegic engineer becomes first wheelchair user to blast into space

Space News

A paraplegic engineer from Germany blasted off on a dream-come-true rocket ride with five other passengers Saturday, December 20, leaving her wheelchair behind to float in space while beholding Earth from on high.

Severely injured in a mountain bike accident seven years ago, Michaela Benthaus became the first wheelchair user in space, launching from West Texas with Jeff Bezos’ company Blue Origin. She was accompanied by a retired SpaceX executive also born in Germany, Hans Koenigsmann, who helped organize and, along with Blue Origin, sponsored her trip. Their ticket prices were not divulged.

An ecstatic Benthaus said she laughed all the way up — the capsule soared more than 65 miles (105 kilometers) — and tried to turn upside down once in space.

“It was the coolest experience,” she said shortly after landing.

The 10-minute space-skimming flight required only minor adjustments to accommodate Benthaus, according to the company. That’s because the autonomous New Shepard capsule was designed with accessibility in mind, “making it more accessible to a wider range of people than traditional spaceflight,” said Blue Origin’s Jake Mills, an engineer who trained the crew and assisted them on launch day.

Among Blue Origin’s previous space tourists: those with limited mobility and impaired sight or hearing, and a pair of 90-year-olds.

For Benthaus, Blue Origin added a patient transfer board so she could scoot between the capsule’s hatch and her seat. The recovery team also unrolled a carpet on the desert floor following touchdown, providing immediate access to her wheelchair, which she left behind at liftoff. She practiced in advance, with Koenigsmann taking part with the design and testing. An elevator was already in place at the launch pad to ascend the seven stories to the capsule perched atop the rocket.

Benthaus, 33, part of the European Space Agency’s graduate trainee program in the Netherlands, experienced snippets of weightlessness during a parabolic airplane flight out of Houston in 2022. Less than two years later, she took part in a two-week simulated space mission in Poland.

“I never really thought that going on a spaceflight would be a real option for me because even as like a super healthy person, it’s like so competitive, right?” she told The Associated Press ahead of the flight.

Her accident dashed whatever hope she had. “There is like no history of people with disabilities flying to space," she said.

When Koenigsmann approached her last year about the possibility of flying on Blue Origin and experiencing more than three minutes of weightlessness on a space hop, Benthaus thought there might be a misunderstanding. But there wasn't, and she immediately signed on.

It’s a private mission for Benthaus with no involvement by ESA, which this year cleared reserve astronaut John McFall, an amputee, for a future flight to the International Space Station. The former British Paralympian lost his right leg in a motorcycle accident when he was a teenager.

An injured spinal cord means Benthaus can’t walk at all, unlike McFall who uses a prosthetic leg and could evacuate a space capsule in an emergency at touchdown by himself. Koenigsmann was designated before flight as her emergency helper; he and Mills lifted her out of the capsule and down the short flight of steps at flight’s end.

“You should never give up on your dreams, right?” Benthaus urged following touchdown.

Benthaus was adamant about doing as much as she could by herself. Her goal is to make not only space accessible to the disabled, but to improve accessibility on Earth too.

While getting lots of positive feedback within “my space bubble,” she said outsiders aren't always as inclusive.

“I really hope it’s opening up for people like me, like I hope I’m only the start," she said.

Besides Koenigsmann, Benthaus shared the ride with business executives and investors, and a computer scientist. They raised Blue Origin’s list of space travelers to 86.

Bezos, the billionaire founder of Amazon, created Blue Origin in 2000 and launched on its first passenger spaceflight in 2021. The company has since delivered spacecraft to orbit from Cape Canaveral, Florida, using the bigger and more powerful New Glenn rocket, and is working to send landers to the moon.

Houston neighbor named richest small town in Texas for 2025

Ranking It

Affluent Houston neighbor Bellaire is cashing in as the richest small town in Texas for 2025, according to new study from GoBankingRates.

The report, "The Richest Small Town in Every State," used data from the U.S. Census Bureau's American Community Survey to determine the 50 richest small towns in America based on their median household income.

Of course, Houstonians realize that describing Bellaire as a "small town" is a bit of misnomer. Located less than 10 miles from downtown and fully surrounded by the City of Houston, Bellaire is a wealthy enclave that boasts a population of just over 17,000 residents. These affluent citizens earn a median $236,311 in income every year, which GoBankingRates says is the 11th highest household median income out of all 50 cities included in the report.

The average home in this city is worth over $1.12 million, but Bellaire's lavish residential reputation often attracts properties with multimillion-dollar price tags.

Bellaire also earned a shining 81 livability score for its top quality schools, health and safety, commute times, and more. The livability index, provided by Toronto, Canada-based data analytics and real estate platform AreaVibes, said Bellaire has "an abundance of exceptional local amenities."

"Among these are conveniently located grocery stores, charming coffee shops, diverse dining options and plenty of spacious parks," AreaVibes said. "These local amenities contribute significantly to its overall appeal, ensuring that [residents'] daily needs are met and offering ample opportunities for leisure and recreation."

Earlier in 2025, GoBankingRates ranked Bellaire as the No. 23 wealthiest suburb in America, and it's no stranger to being named on similar lists comparing the richest American cities.

---

This article originally appeared on CultureMap.com.

How a Houston startup is taking on corrosion, a costly climate threat

now streaming

Corrosion is not something most people think about, but for Houston's industrial backbone pipelines, refineries, chemical plants, and water infrastructure, it is a silent and costly threat. Replacing damaged steel and overusing chemicals adds hundreds of millions of tons of carbon emissions every year. Despite the scale of the problem, corrosion detection has barely changed in decades.

In a recent episode of the Energy Tech Startups Podcast, Anwar Sadek, founder and CEO of Corrolytics, explained why the traditional approach is not working and how his team is delivering real-time visibility into one of the most overlooked challenges in the energy transition.

From Lab Insight to Industrial Breakthrough

Anwar began as a researcher studying how metals degrade and how microbes accelerate corrosion. He quickly noticed a major gap. Companies could detect the presence of microorganisms, but they could not tell whether those microbes were actually causing corrosion or how quickly the damage was happening. Most tests required shipping samples to a lab and waiting months for results, long after conditions inside the asset had changed.

That gap inspired Corrolytics' breakthrough. The company developed a portable, real-time electrochemical test that measures microbial corrosion activity directly from fluid samples. No invasive probes. No complex lab work. Just the immediate data operators can act on.

“It is like switching from film to digital photography,” Anwar says. “What used to take months now takes a couple of hours.”

Why Corrosion Matters in Houston's Energy Transition

Houston's energy transition is a blend of innovation and practicality. While the world builds new low-carbon systems, the region still depends on existing industrial infrastructure. Keeping those assets safe, efficient, and emission-conscious is essential.

This is where Corrolytics fits in. Every leak prevented, every pipeline protected, and every unnecessary gallon of biocide avoided reduces emissions and improves operational safety. The company is already seeing interest across oil and gas, petrochemicals, water and wastewater treatment, HVAC, industrial cooling, and biofuels. If fluids move through metal, microbial corrosion can occur, and Corrolytics can detect it.

Because microbes evolve quickly, slow testing methods simply cannot keep up. “By the time a company gets lab results, the environment has changed completely,” Anwar explains. “You cannot manage what you cannot measure.”

A Scientist Steps Into the CEO Role

Anwar did not plan to become a CEO. But through the National Science Foundation's ICorps program, he interviewed more than 300 industry stakeholders. Over 95 percent cited microbial corrosion as a major issue with no effective tool to address it. That validation pushed him to transform his research into a product.

Since then, Corrolytics has moved from prototype to real-world pilots in Brazil and Houston, with early partners already using the technology and some preparing to invest. Along the way, Anwar learned to lead teams, speak the language of industry, and guide the company through challenges. “When things go wrong, and they do, it is the CEO's job to steady the team,” he says.

Why Houston

Relocating to Houston accelerated everything. Customers, partners, advisors, and manufacturing talent are all here. For industrial and energy tech startups, Houston offers an ecosystem built for scale.

What's Next

Corrolytics is preparing for broader pilots, commercial partnerships, and team growth as it continues its fundraising efforts. For anyone focused on asset integrity, emissions reduction, or industrial innovation, this is a company to watch.

Listen to the full conversation with Anwar Sadek on the Energy Tech Startups Podcast to learn more:

---

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.

This article originally appeared on our sister site, EnergyCapitalHTX.com.