The grant is part of the selective Course & Program Grants program, which supports faculty and staff in U.S. higher education institutions to expand and strengthen STEM innovation and entrepreneurship ecosystems. Photo via shsu.edu

Three academics at Sam Houston State University have secured grant funding to support innovation and entrepreneurship at the university across science, technology, engineering, and mathematics.

Kyle Scott, assistant professor of entrepreneurship, and Bob Milner and Pamela Zelbst, co-directors of the Center for Innovation, Technology and Entrepreneurship at Sam Houston State University, have been awarded catalytic grant funding from VentureWell, a nonprofit that supports early-stage science and technology innovators. Sam Houston State University’s project was selected from a national pool of applicants.

The grant is part of the selective Course & Program Grants program, which supports faculty and staff in U.S. higher education institutions to expand and strengthen STEM innovation and entrepreneurship ecosystems. The goal for these grants is to assist with “accelerating sustainable and inclusive innovation” according to a news release.VentureWell will also help grantees in a cohort-based community of practice that will provide networking opportunities and assistance.

The grantee teams can use the funds to develop new technology transfer certificate programs for underrepresented STEM student entrepreneurs.

“VentureWell is committed to broadening pathways for science and technology innovators and the faculty supporting them—particularly those from historically underrepresented groups in the field,” said VentureWell President and CEO Phil Weilerstein in a news release . “We are excited to provide these talented grantees with resources and support to create impactful programs and learning experiences on their campuses, in their communities, and in the broader innovation and entrepreneurship ecosystem.”

Some of the projects the Center for Innovation, Technology & Entrepreneurship has recently done include a “Robohand” to help a child with Amniotic Band Syndrome (ABS).

The Greater Houston Partnership announced a new mentorship-focused initiative in the region. Photo via Houston.org

Houston organizations team up to provide mentorship, address gaps in the workforce

future of Hou

A mix of corporate and university organizations have teamed up with the Greater Houston Partnership for a new program that enables mentorship for local college students.

The GHP announced PartnerUp Houston, a new regional mentorship initiative, this week. Ten companies — including Calpine, Boston Consulting Group, and HP — have agreed to provide professional mentors and a handful of universities will offer the mentorship opportunity to students. The local universities that are signed on include Houston Christian University, Rice University, Sam Houston State University, University of Houston, and University of St. Thomas.

“Since 2017, the Partnership has facilitated collaboration between higher education leaders and the business community to strengthen the region’s talent pipeline and ensure more opportunity for Houstonians,” says Partnership Chair Thad Hill, who serves as president and CEO of Calpine, in a news release. “We believe a robust, regional mentorship program like PartnerUp will help accelerate career outcomes for students and help Houston area employers identify and cultivate great talent.”

The program is still seeking individuals and corporate partners for mentors. Those interested have until January 20 to opt in and can head online to learn more.

The program is a collaboration between the GHP and Mentor Collective, which has organized more than 250,000 successful mentorship matches since its founding in 2016.

“The United States increasingly lags behind the developed world in economic mobility," says Jackson Boyar, co-founder and CEO of Mentor Collective, in the release. "Proactively bridging these equity and skills gaps requires local employers and post-secondary institutions to collaborate on initiatives that allow students to acquire professional experiences and skills.”

“Institutions enrolling and graduating a diverse class with strong employment outcomes are those implementing holistic student support, including career mentorship," he continues. "Mentor Collective is proud to play a role in the PartnerUp Houston initiative and offer the technology needed to scale high-impact practices that drive student and economic success.”

A new UH-led program will work with energy corporations to prepare the sector's future workforce. Photo via Getty Images

University of Houston leads data science collaboration to propel energy transition

seeing green

Five Texas schools have teamed up with energy industry partners to create a program to train the sectors future workforce. At the helm of the initiative is the University of Houston.

The Data Science for Energy Transition project, which is funded through 2024 by a $1.49 million grant from the National Science Foundation, includes participation from UH, the University of Houston-Downtown, the University of Houston-Victoria, the University of Houston-Clear Lake, and Sam Houston State University.

The project will begin but introducing a five-week data science camp next summer where undergraduate and master’s level students will examine data science skills already in demand — as well as the skills that will be needed in the future as the sector navigates a shift to new technologies.

The camp will encompass computer science and programming, statistics, machine learning, geophysics and earth science, public policy, and engineering, according to a news release from UH. The project’s principal investigator is Mikyoung Jun, ConocoPhillips professor of data science at the UH College of Natural Science and Mathematics.

The new program's principal investigator is Mikyoung Jun. Photo via UH.edu

“It’s obvious that the Houston area is the capital for the energy field. We are supporting our local industries by presenting talented students from the five sponsoring universities and other Texas state universities with the essential skills to match the growing needs within those data science workforces,” Jun says in the release. “We’re planning all functions in a hybrid format so students located outside of Houston, too, can join in.”

Jun describes the camp as having a dual focus — both on the issue of energy transition to renewable sources as well as the traditional energy, because that's not being eradicated any time soon, she explains.

Also setting the program apart is the camp's prerequisites — or lack thereof. The program is open to majors in energy-related fields, such as data science or petroleum engineering, as well as wide-ranging fields of study, such as business, art, history, law, and more.

“The camp is not part of a degree program and its classes do not offer credits toward graduation, so students will continue to follow their own degree plan,” Jun says in the release. “Our goal with the summer camp is to give students a solid footing in data science and energy-related fields to help them focus on skills needed in data science workforces in energy-related companies in Houston and elsewhere. Although that may be their first career move, they may settle in other industries later. Good skills in data processing can make them wise hires for many technology-oriented organizations.”

Jun's four co-principal investigators include Pablo Pinto, professor at UH’s Hobby School of Public Affairs and director of the Center for Public Policy; Jiajia Sun, UH assistant professor of geophysics; Dvijesh Shastri, associate professor of computer science, UH-Downtown; and Yun Wan, professor of computer information systems and chair of the Computer Science Division, UH-Victoria. Eleven other faculty members from five schools will serve as senior personnel. The initiative's energy industry partners include Conoco Phillips, Schlumberger, Fugro, Quantico Energy Solutions, Shell, and Xecta Web Technologies.

The program's first iteration will select 40 students to participate in the camp this summer. Applications, which have not opened yet, will be made available online.

The Data Science for Energy Transition project is a collaboration between five schools. Image via UH.edu

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston engineers develop breakthrough device to advance spinal cord treatment

future of health

A team of Rice University engineers has developed an implantable probe over a hundred times smaller than the width of a hair that aims to help develop better treatments for spinal cord disease and injury.

Detailed in a recent study published in Cell Reports, the probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement, according to a statement from Rice. The research was supported by the National Institutes of Health, Rice, the California-based Salk Institute for Biological Studies, and the philanthropic Mary K. Chapman Foundation based in Oklahoma.

The soft and flexible sensor was used to record neuronal activity in freely moving mice with high resolution for multiple days. Historically, tracking this level of activity has been difficult for researchers because the spinal cord and its neurons move so much during normal activity, according to the team.

“We developed a tiny sensor, spinalNET, that records the electrical activity of spinal neurons as the subject performs normal activity without any restraint,” Yu Wu, a research scientist at Rice and lead author of the study said in a statement. “Being able to extract such knowledge is a first but important step to develop cures for millions of people suffering from spinal cord diseases.”

The team says that before now the spinal cord has been considered a "black box." But the device has already helped the team uncover new findings about the body's rhythmic motor patterns, which drive walking, breathing and chewing.

Lan Luan (from left), Yu Wu, and Chong Xie are working on the breakthrough device. Photo by Jeff Fitlow/Rice University

"Some (spinal neurons) are strongly correlated with leg movement, but surprisingly, a lot of neurons have no obvious correlation with movement,” Wu said in the statement. “This indicates that the spinal circuit controlling rhythmic movement is more complicated than we thought.”

The team said they hope to explore these findings further and aim to use the technology for additional medical purposes.

“In addition to scientific insight, we believe that as the technology evolves, it has great potential as a medical device for people with spinal cord neurological disorders and injury,” Lan Luan, an associate professor of electrical and computer engineering at Rice and a corresponding author on the study, added in the statement.

Rice researchers have developed several implantable, minimally invasive devices to address health and mental health issues.

In the spring, the university announced that the United States Department of Defense had awarded a four-year, $7.8 million grant to the Texas Heart Institute and a Rice team led by co-investigator Yaxin Wang to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation.

That same month, the university shared news that Professor Jacob Robinson had published findings on minimally invasive bioelectronics for treating psychiatric conditions. The 9-millimeter device can deliver precise and programmable stimulation to the brain to help treat depression, obsessive-compulsive disorder and post-traumatic stress disorder.

Houston clean hydrogen startup to pilot tech with O&G co.

stay gold

Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

“This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

“With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

------

This article originally ran on EnergyCapital.

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes an e-commerce startup founder, an industrial biologist, and a cellular scientist.

Omair Tariq, co-founder and CEO of Cart.com

Omair Tariq of Cart.com joins the Houston Innovators Podcast to share his confidence in Houston as the right place to scale his unicorn. Photo via Cart.com

Houston-based Cart.com, which operates a multichannel commerce platform, has secured $105 million in debt refinancing from investment manager BlackRock.

The debt refinancing follows a recent $25 million series C extension round, bringing Cart.com’s series C total to $85 million. The scaleup’s valuation now stands at $1.2 billion, making it one of the few $1 billion-plus “unicorns” in the Houston area.

Cart.com was co-founded by CEO Omair Tariq in October 2020. Read more.

Nádia Skorupa Parachin, vice president of industrial biotechnology at Cemvita

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos. Read more.

Han Xiao, associate professor of chemistry at Rice University

The funds were awarded to Han Xiao, a chemist at Rice University.

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories. Xiao will use the five-year grant to advance his work on noncanonical amino acids.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement. Read more.