A Houston-based team of scientists and students have developed a low-cost ventilator. Photo courtesy of Rice University

As the COVID-19 case numbers continue to grow, hospitals around the world are either experiencing or expecting a shortage of ventilation units. In Houston, a team of students and staff at Rice University have designed a solution.

Along with Canadian global health design firm, Metric Technologies, the Rice team has developed an automated bag valve mask ventilator that can be crafted for less than $300. Moreover, the team expects to share the designs so that these low-cost machines can be produced everywhere.

The project is being called Take a Breatherand was inspired by an early prototype that a group of engineering seniors developed in 2019 at Rice's Brown School of Engineering'sOshman Engineering Design Kitchen, or OEDK. The idea was to take a bag valve mask, which medical professionals use manually by squeezing with their hands, and create a device that can instead compress the bag automatically.

The parts of the device are largely created via 3D printing and laser cut, according to a press release from Rice, and only took around a week to prototype. While the original project was created to help emergency medicine professionals using a manual ventilator, the device is very relevant in the current coronavirus crisis.

"The immediate goal is a device that works well enough to keep noncritical COVID-19 patients stable and frees up larger ventilators for more critical patients," says Amy Kavalewitz, executive director of the OEDK, in the release.

As principal at Metric Technologies, Dr. Rohith Malya, who is assistant professor of emergency medicine at Baylor College of Medicine and an adjunct assistant professor of bioengineering at Rice, saw the growing need for for automated ventilator masks in emergency medicine.

"This is a clinician-informed end-to-end design that repurposes the existing BVM global inventory toward widespread and safe access to mechanical ventilation," Malya says in the release.

According to Malya, more than 100 million bag valve masks are produced annually. The designed device, which can work with these bags, has been named the ApolloBVM — a nod to when President John F. Kennedy announced from the Rice campus that it was his mission to get America to the moon.

"This project appeals to our ingenuity, it's a Rice-based project and it's for all of humanity," he says in the release. "And we're on an urgent timescale. We decided to throw it all on the table and see how far we go."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice research breakthrough paves the way for advanced disease therapies

study up

Bioengineers at Rice University have developed a “new construction kit” for building custom sense-and-respond circuits in human cells, representing a major breakthrough in the field of synthetic biology, which could "revolutionize" autoimmune disease and cancer therapeutics.

In a study published in the journal Science, the team focused on phosphorylation, a cellular process in the body in which a phosphate group is added to a protein, signaling a response. In multicellular organisms, phosphorylation-based signaling can involve a multistage, or a cascading-like effect. Rice’s team set out to show that each cycle in a cascade can be treated as an elementary unit, meaning that they can be reassembled in new configurations to form entirely novel pathways linking cellular inputs and outputs.

Previous research on using phosphorylation-based signaling for therapeutic purposes has focused on re-engineering pathways.

“This opens up the signaling circuit design space dramatically,” Caleb Bashor, assistant professor of bioengineering and biosciences and corresponding author on the study, said in a news release. “It turns out, phosphorylation cycles are not just interconnected but interconnectable … Our design strategy enabled us to engineer synthetic phosphorylation circuits that are not only highly tunable but that can also function in parallel with cells’ own processes without impacting their viability or growth rate.”

Bashor is the deputy director for the Rice Synthetic Biology Institute, which launched last year.

The Rice lab's sense-and-respond cellular circuit design is also innovative because phosphorylation occurs rapidly. Thus, the new circuits could potentially be programmed to respond to physiological events in minutes, compared to other methods, which take hours to activate.

Rice’s team successfully tested the circuits for sensitivity and their ability to respond to external signals, such as inflammatory issues. The researchers then used the framework to engineer a cellular circuit that can detect certain factors, control autoimmune flare-ups and reduce immunotherapy-associated toxicity.

“This work brings us a whole lot closer to being able to build ‘smart cells’ that can detect signs of disease and immediately release customizable treatments in response,” Xiaoyu Yang, a graduate student in the Systems, Synthetic and Physical Biology Ph.D. program at Rice who is the lead author on the study, said in a news release.

Ajo-Franklin, a professor of biosciences, bioengineering, chemical and biomolecular engineering and a Cancer Prevention and Research Institute of Texas Scholar, added “the Bashor lab’s work vaults us forward to a new frontier — controlling mammalian cells’ immediate response to change.”

Greentown Labs names new CEO to lead pioneering climate tech incubator

Transition News

Houston and Boston climate tech incubator Greentown Labs has named Georgina Campbell Flatter as the organization’s incoming CEO.

Flatter will transition to Greentown from her role as co-founder and executive director of TomorrowNow.org, a global nonprofit that studies and connects next-generation weather and climate technologies with communities most affected by climate change.

“We are at a transformational moment in the energy transition, with an unprecedented opportunity to drive solutions in energy production, sustainability, and climate resilience,” Flatter said in a news release. “Greentown Labs is, and has always been, a home for entrepreneurs and a powerhouse of collaboration and innovation.”

Previously, Flatter worked to launch TomorrowNow out of tomorrow.io, a Boston-based AI-powered weather intelligence and satellite technology company. The organization secured millions in climate philanthropy from partners, including the Gates Foundation, which helped deliver cutting-edge climate solutions to millions of African farmers weekly.

Flatter also spent 10 years at the Massachusetts Institute of Technology (MIT), where she was a senior lecturer and led global initiatives at the intersection of technology and social impact. Her research work includes time at Langer Lab and Sun Catalytix, an MIT – ARPA-E-funded spin-out that focused on energy storage solutions inspired by natural photosynthesis. Flatter is also an Acumen Rockefeller Global Food Systems Fellow and was closely involved with Greentown Labs when it was founded in Boston in 2011, according to the release.

“It’s rare to find an individual who has impressive climate and energy expertise along with nonprofit and entrepreneurial leadership—we’re fortunate Georgie brings all of this and more to Greentown Labs,” Bobby Tudor, Greentown Labs Board Chair and Chairman of the Houston Energy Transition Initiative, said in a news release.

Flatter will collaborate with Kevin Dutt, Greentown’s Interim CEO, and also continue to serve on Greentown’s Board of Directors, which was recently announced in December and contributed to a successful $4 million funding round. She’s also slated to speak at CERAWeek next month.

“In this next chapter, I’m excited to build on our entrepreneurial roots and the strength of our ever-growing communities in Boston and Houston,” Flatter added in a news release. “Together, we will unite entrepreneurs, partners, and resources to tackle frontier challenges and scale breakthrough technologies.”

Greentown also named Naheed Malik its new chief financial officer last month. The announcements come after Greentown’s former CEO and president, Kevin Knobloch, announced that he would step down in July 2024 after less than a year in the role.

---

This article originally appeared on our sister site, EnergyCapital.

Houston firm invests $150M in leading 'lab on a chip' medical diagnostics co.

fresh funds

Houston-based health technology investment firm Hamershlag Private Capital Management Limited (HPCM) announced a $150.15 million venture investment in Patho Care LLC.

Patho Care is a “lab on a chip” medical diagnostics company known for its noninvasive point-of-care testing platforms, such as its Raman spectroscopy-based platform.

Its digital point-of-care testing devices are programmable, mobile, and reusable and can detect current or future respiratory bacterial or viral infections. The company says the technology is more cost-effective and provides results faster than traditional diagnostic methods.

“Patho Care LLC is a distinguished leader in healthcare diagnostics through the utilization of a novel approach with spectroscopy and this investment aligns with HPCM’s strategy of partnering with high-potential companies in dynamic industries,” L. Mychal Jefferson, Chairman of Hamershlag, said in a news release.

The transaction was structured as an acquisition and recapitalization using newly issued common stock and cash, which will work through a newly formed entity, PathoCare Holdings Inc. The deal will also facilitate the repayment of Patho Care LLC's existing financial obligations and settle Patho Care’s outstanding notes, helping ensure the company’s financial readiness, according to the release.

The investment will help Patho Care LLC improve operational efficiencies, broaden its service offerings and continue to innovate in the diagnostic testing space. The companies hope the collaboration will help “unlock new growth opportunities while maintaining the company’s legacy of excellence in an emerging technology,” according to a news release.

“Our commitment to delivering transformative value through innovative investments underscores our confidence in Patho Care’s vision and capabilities,” Jefferson added.