Houston-based Ridgeline Therapeutics isn't going to allow you beat aging, but someday it may well help you to live without muscle loss or diabetes. Getty Images

Stan Watowich's conversation flits with ease from restaurants to solving the homeless crisis. His active mind has made him a serial inventor. But the founder and current CEO of Ridgeline Therapeutics, a spin-off company of the University of Texas Medical Branch in Galveston where he is an associate professor of biochemistry and molecular biology, also has a razor-sharp focus when it comes to discussing his research. He wants to make it clear that he is not going to cure aging.

"You and I are still going to get old," he says. "But we have our hopes that as we get old our muscles will stay healthy."

He's talking about the drug candidate, RLT-72484. It has been shown to reactivate muscle stem cells and regenerate skeletal muscle in aged laboratory mice. We've all seen it in elderly humans: Your grandparents are shrunken from their younger selves because their muscles no longer regenerate at the rate that they once did.

"When you go to the gym, you feel that burn which indicates that you have muscle damage. Your stem cells are responsible for repairing this damage and building your muscles," Watowich explains. Stem cells simply don't repair at the same rate in older individuals.

That's why, for example, elderly people who break a hip often fare poorly in the aftermath. It's not uncommon to face a difficult period of physical therapy following hip fracture surgery. Many patients do not return to independent living. And, the mortality rate one year after a hip fracture can be as high as 30 percent. If RLT-72484 proves to work as well in humans as it does in animal models, it could make it easier for patients to gain muscle after a fall.

But even for healthy older adults, muscle decline can cause problems. Travel is difficult if you don't have the muscle strength for long walks. Playing with grandchildren is a challenge if your mobility is compromised. Watowich's vision is to prevent muscle decline or at least slow it down.

The drug could also potentially help muscular dystrophy patients. The genetic diseases identified under that umbrella diagnosis all cause muscle loss before old age, sometimes even in infancy. If RLT-72484 fulfills its promise, it could allow MD patients to live more normal lives.

In the University of Texas Medical Branch study, the mice's muscle fiber doubled in size while muscle strength increased by 70 percent. The team published a study last month describing its results. The next year will be spent on studies necessary to win FDA approval to begin testing on humans.

Muscle loss isn't the only big problem Ridgeline Therapeutics is seeking to address. Obesity-linked diabetes is also in Watowich's sights. His team has come up with a small molecule that shrinks fat tissue in obese animals. In studies published last year, mice lost seven percent of their body weight in 10 days of treatment without changing their diets. The animals remained obese, but their fat deposits had decreased in size by 30 percent. The drug on its own cannot make obese people thin, but it may help diabetics to return to a non-diabetic state.

Ridgeline Therapeutics is based in the Texas Medical Center. Watowich explains that 98 percent of biotech companies fail, so it's his goal to "stay lean" and use the $4.2 million award the company received from the Department of Defense to get their technologies into human trials. The company will likely move to the Johnson & Johnson Innovation Labs collaboration space in the next few months.

But of course, what Ridgeline Technologies has to offer is most exciting of all. Remember, it's not going to allow you beat aging. But someday it may well help you to live without muscle loss or diabetes.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas falls to bottom of national list for AI-related job openings

jobs report

For all the hoopla over AI in the American workforce, Texas’ share of AI-related job openings falls short of every state except Pennsylvania and Florida.

A study by Unit4, a provider of cloud-based enterprise resource planning (ERP) software for businesses, puts Texas at No. 49 among the states with the highest share of AI-focused jobs. Just 9.39 percent of Texas job postings examined by Unit4 mentioned AI.

Behind Texas are No. 49 Pennsylvania (9.24 percent of jobs related to AI) and No. 50 Florida (9.04 percent). One spot ahead of Texas, at No. 47, is California (9.56 percent).

Unit4 notes that Texas’ and Florida’s low rankings show “AI hiring concentration isn’t necessarily tied to population size or GDP.”

“For years, California, Texas, and New York dominated tech hiring, but that’s changing fast. High living costs, remote work culture, and the democratization of AI tools mean smaller states can now compete,” Unit4 spokesperson Mark Baars said in a release.

The No. 1 state is Wyoming, where 20.38 percent of job openings were related to AI. The Cowboy State was followed by Vermont at No. 2 (20.34 percent) and Rhode Island at No. 3 (19.74 percent).

“A company in Wyoming can hire an AI engineer from anywhere, and startups in Vermont can build powerful AI systems without being based in Silicon Valley,” Baars added.

The study analyzed LinkedIn job postings across all 50 states to determine which ones were leading in AI employment. Unit4 came up with percentages by dividing the total number of job postings in a state by the total number of AI-related job postings.

Experts suggest that while states like Texas, California and Florida “have a vast number of total job postings, the sheer volume of non-AI jobs dilutes their AI concentration ratio,” according to Unit4. “Moreover, many major tech firms headquartered in California are outsourcing AI roles to smaller, more affordable markets, creating a redistribution of AI employment opportunities.”

Houston energy trailblazer Fervo closes $462 million Series E

Fresh Funds

Houston-based geothermal energy company Fervo Energy has closed an oversubscribed $462 million series E funding round, led by new investor B Capital.

“Fervo is setting the pace for the next era of clean, affordable, and reliable power in the U.S.,” Jeff Johnson, general partner at B Capital, said in a news release.

“With surging demand from AI and electrification, the grid urgently needs scalable, always-on solutions, and we believe enhanced geothermal energy is uniquely positioned to deliver. We’re proud to support a team with the technical leadership, commercial traction, and leading execution capabilities to bring the world’s largest next-generation geothermal project online and make 24/7 carbon-free power a reality.”

The financing reflects “strong market confidence in Fervo’s opportunity to make geothermal energy a cornerstone of the 24/7 carbon-free power future,” according to the company. The round also included participation from Google, a longtime Fervo Partner, and other new and returning investors like Devon Energy, Mitsui & Co., Ltd., Mitsubishi Heavy Industries and Centaurus Capital. Centaurus Capital also recently committed $75 million in preferred equity to support the construction of Cape Station Phase I, Fervo noted in the release.

The latest funding will support the continued buildout of Fervo’s Utah-based Cape Station development, which is slated to start delivering 100 MW of clean power to the grid beginning in 2026. Cape Station is expected to be the world's largest next-generation geothermal development, according to Fervo. The development of several other projects will also be included in the new round of funding.

“This funding sharpens our path from breakthrough technology to large-scale deployment at Cape Station and beyond,” Tim Latimer, CEO and co-founder of Fervo, added in the news release. “We’re building the clean, firm power fleet the next decade requires, and we’re doing it now.”

Fervo recently won Scaleup of the Year at the 2025 Houston Innovation Awards, and previously raised $205.6 million in capital to help finance the Cape Station earlier this year. The company fully contracted the project's capacity with the addition of a major power purchase agreement from Shell this spring. Fervo’s valuation has been estimated at $1.4 billion and includes investments and support from Bill Gates.

“This new investment makes one thing clear: the time for geothermal is now,” Latimer added in a LinkedIn post. “The world desperately needs new power sources, and with geothermal, that power is clean and reliable. We are ready to meet the moment, and thrilled to have so many great partners on board.”

---

This article originally appeared on EnergyCapitalHTX.com.

Baylor center receives $10M NIH grant to continue rare disease research

NIH funding

Baylor College of Medicine’s Center for Precision Medicine Models received a $10 million, five-year grant from the National Institutes of Health last month that will allow it to continue its work studying rare genetic diseases.

The Center for Precision Medicine Models creates customized cell, fly and mouse models that mimic specific genetic variations found in patients, helping scientists to better understand how genetic changes cause disease and explore potential treatments.

The center was originally funded by an NIH grant, and its models have contributed to the discovery of several new rare disease genes and new symptoms caused by known disease genes. It hosts an online portal that allows physicians, families and advocacy groups to nominate genetic variants or rare diseases that need further investigation or new treatments.

Since its founding in 2020, it has received 156 disease/variant nominations, accepted 63 for modeling and produced more than 200 precision models, according to Baylor.

The center plans to use the latest round of funding to bring together more experts in rare disease research, animal modeling and bioinformatics, and to expand its focus and model more complex diseases.

Dr. Jason Heaney, associate professor in the Department of Molecular and Human Genetics at BCM, serves as the lead principal investigator of the center.

“The Department of Molecular and Human Genetics is uniquely equipped to bring together the diverse expertise needed to connect clinical human genetics, animal research and advanced bioinformatics tools,” Heaney added in the release. “This integration allows us to drive personalized medicine forward using precision animal models and to turn those discoveries into better care for patients.”