The four-year agreement will support the team’s ongoing work on removing PFAS from soil. Photo via Rice University

A Rice University chemist James Tour has secured a new $12 million cooperative agreement with the U.S. Army Engineer Research and Development Center on the team’s work to efficiently remove pollutants from soil.

The four-year agreement will support the team’s ongoing work on removing per- and polyfluoroalkyl substances (PFAS) from contaminated soil through its rapid electrothermal mineralization (REM) process, according to a statement from Rice.

Traditionally PFAS have been difficult to remove by conventional methods. However, Tour and the team of researchers have been developing this REM process, which heats contaminated soil to 1,000 C in seconds and converts it into nontoxic calcium fluoride efficiently while also preserving essential soil properties.

“This is a substantial improvement over previous methods, which often suffer from high energy and water consumption, limited efficiency and often require the soil to be removed,” Tour said in the statement.

The funding will help Tour and the team scale the innovative REM process to treat large volumes of soil. The team also plans to use the process to perform urban mining of electronic and industrial waste and further develop a “flash-within-flash” heating technology to synthesize materials in bulk, according to Rice.

“This research advances scientific understanding but also provides practical solutions to critical environmental challenges, promising a cleaner, safer world,” Christopher Griggs, a senior research physical scientist at the ERDC, said in the statement.

Also this month, Tour and his research team published a report in Nature Communications detailing another innovative heating technique that can remove purified active materials from lithium-ion battery waste, which can lead to a cleaner production of electric vehicles, according to Rice.

“With the surge in battery use, particularly in EVs, the need for developing sustainable recycling methods is pressing,” Tour said in a statement.

Similar to the REM process, this technique known as flash Joule heating (FJH) heats waste to 2,500 Kelvin within seconds, which allows for efficient purification through magnetic separation.

This research was also supported by the U.S. Army Corps of Engineers, as well as the Air Force Office of Scientific Research and Rice Academy Fellowship.

Last year, a fellow Rice research team earned a grant related to soil in the energy transition. Mark Torres, an assistant professor of Earth, environmental and planetary sciences; and Evan Ramos, a postdoctoral fellow in the Torres lab; were given a three-year grant from the Department of Energy to investigate the processes that allow soil to store roughly three times as much carbon as organic matter compared to Earth's atmosphere.

By analyzing samples from the East River Watershed, the team aims to understand if "Earth’s natural mechanisms of sequestering carbon to combat climate change," Torres said in a statement.

The funds were awarded to Han Xiao, a scientist at Rice University.

Houston chemist lands $2M NIH grant for cancer treatment research

future of cellular health

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories.

Xiao will use the five-year grant to develop noncanonical amino acids (ncAAs) with diverse properties to help build proteins, according to a statement from Rice. He and his team will then use the ncAAs to explore the vivo sensors for enzymes involved in posttranslational modifications (PTMs), which play a role in the development of cancers and neurological disorders. Additionally, the team will look to develop a way to detect these enzymes in living organisms in real-time rather than in a lab.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement.

According to Rice, these developments could have major implications for the way diseases are treated, specifically for epigenetic inhibitors that are used to treat cancer.

Xiao helped lead the charge to launch Rice's new Synthesis X Center this spring. The center, which was born out of informal meetings between Xio's lab and others from the Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center at the Baylor College of Medicine, aims to improve cancer outcomes by turning fundamental research into clinical applications.

They will build upon annual retreats, in which investigators can share unpublished findings, and also plan to host a national conference, the first slated for this fall titled "Synthetic Innovations Towards a Cure for Cancer.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston doctor aims to revolutionize hearing aid industry with tiny implant

small but mighty

“What is the future of hearing aids?” That’s the question that led to a potential revolution.

“The current hearing aid market and technology is old, and there are little incremental improvements, but really no significant, radical new ideas, and I like to challenge the status quo,” says Dr. Ron Moses, an ENT specialist and surgeon at Houston Methodist.

Moses is the creator of NanoEar, which he calls “the world’s smallest hearing aid.” NanoEar is an implantable device that combines the invisibility of a micro-sized tympanostomy tube with more power—and a superior hearing experience—than the best behind-the-ear hearing aid.

“You put the NanoEar inside of the eardrum in an in-office procedure that takes literally five minutes,” Moses says.

As Moses explains, because of how the human cochlea is formed, its nerves break down over time. It’s simply an inevitability that if we live long enough, we will need hearing aids.

“The question is, ‘Are we going to all be satisfied with what exists?’” he asks.

Moses says that currently, only about 20 percent of patients who need hearing aids have them. That’s because of the combination of the stigma, the expense, and the hassle and discomfort associated with the hearing aids currently available on the market. That leaves 80 percent untapped among a population of 466 million people with hearing impairment, and more to come as our population ages. In a nearly $7 billion global market, that additional 80 percent could mean big money.

Moses initially patented a version of the invention in 2000, but says that it took finding the right team to incorporate as NanoEar. That took place in 2016, when he joined forces with cofounders Michael Moore and Willem Vermaat, now the company’s president and CFO, respectively. Moore is a mechanical engineer, while Vermaat is a “financial guru;” both are repeat entrepreneurs in the biotech space.

Today, NanoEar has nine active patents. The company’s technical advisors include “the genius behind developing the brains in this device,” Chris Salthouse; NASA battery engineer Will West; Dutch physicist and audiologist Joris Dirckx; and Daniel Spitz, a third-generation master watchmaker and the original guitarist for the famed metal band Anthrax.

The NanoEar concept has done proof-of-concept testing on both cadavers at the University of Antwerp and on chinchillas, which are excellent models for human hearing, at Tulane University. As part of the TMC Innovation Institute program in 2017, the NanoEar team met with FDA advisors, who told them that they might be eligible for an expedited pathway to approval.

Thus far, NanoEar has raised about $900,000 to get its nine patents and perform its proof-of-concept experiments. The next step is to build the prototype, but completing it will take $2.75 million of seed funding.

Despite the potential for making global change, Moses has said it’s been challenging to raise funds for his innovation.

“We're hoping to find that group of people or person who may want to hear their children or grandchildren better. They may want to join with others and bring a team of investors to offset that risk, to move this forward, because we already have a world-class team ready to go,” he says.

To that end, NanoEar has partnered with Austin-based Capital Factory to help with their raise. “I have reached out to their entire network and am getting a lot of interest, a lot of interest,” says Moses. “But in the end, of course, we need the money.”

It will likely, quite literally, be a sound investment in the future of how we all hear the next generation.

Houston VC funding surged in Q1 2025 to highest level in years, report says

by the numbers

First-quarter funding for Houston-area startups just hit its highest level since 2022, according to the latest PitchBook-NVCA Venture Monitor. But fundraising in subsequent quarters might not be as robust thanks to ongoing economic turmoil, the report warns.

In the first quarter of 2025, Houston-area startups raised $544.2 million in venture capital from investors, PitchBook-NVCA data shows. That compares with $263.5 million in Q1 2024 and $344.5 million in Q1 2023. For the first quarter of 2022, local startups nabbed $745.5 million in venture capital.

The Houston-area total for first-quarter VC funding this year fell well short of the sum for the Austin area (more than $3.3 billion) and Dallas-Fort Worth ($696.8 million), according to PitchBook-NVCA data.

While first-quarter 2025 funding for Houston-area startups got a boost, the number of VC deals declined versus the first quarters of 2024, 2023 and 2022. The PitchBook-NVCA Monitor reported 37 local VC deals in this year’s first quarter, compared with 45 during the same period in 2024, 53 in 2023, and 57 in 2022.

The PitchBook-NVCA report indicates fundraising figures for the Houston area, the Austin area, Dallas-Fort Worth and other markets might shrink in upcoming quarters.

“Should the latest iteration of tariffs stand, we expect significant pressure on fundraising and dealmaking in the near term as investors sit on the sidelines and wait for signs of market stabilization,” the report says.

Due to new trade tariffs and policy shifts, the chances of an upcoming rebound in the VC market have likely faded, says Nizar Tarhuni, executive vice president of research and market intelligence at PitchBook.

“These impacts amplify economic uncertainty and could further disrupt the private markets by complicating investment decisions, supply chains, exit windows, and portfolio strategies,” Tarhuni says. “While this may eventually lead to new domestic investment and create opportunities, the overall environment is facing volatility, hesitation, and structural change.”