HEXAspec, founded by Tianshu Zhai and Chen-Yang Lin, has been awarded an NSF Partnership for Innovation grant. Photo courtesy of Rice

HEXAspec, a spinout from Rice University's Liu Idea Lab for Innovation and Entrepreneurship, was recently awarded a $500,000 National Science Foundation Partnership for Innovation grant.

The team says it will use the funding to continue enhancing semiconductor chips’ thermal conductivity to boost computing power. According to a release from Rice, HEXAspec has developed breakthrough inorganic fillers that allow graphic processing units (GPUs) to use less water and electricity and generate less heat.

The technology has major implications for the future of computing with AI sustainably.

“With the huge scale of investment in new computing infrastructure, the problem of managing the heat produced by these GPUs and semiconductors has grown exponentially. We’re excited to use this award to further our material to meet the needs of existing and emerging industry partners and unlock a new era of computing,” HEXAspec co-founder Tianshu Zhai said in the release.

HEXAspec was founded by Zhai and Chen-Yang Lin, who both participated in the Rice Innovation Fellows program. A third co-founder, Jing Zhang, also worked as a postdoctoral researcher and a research scientist at Rice, according to HEXAspec's website.

The HEXASpec team won the Liu Idea Lab for Innovation and Entrepreneurship's H. Albert Napier Rice Launch Challenge in 2024. More recently, it also won this year's Energy Venture Day and Pitch Competition during CERAWeek in the TEX-E student track, taking home $25,000.

"The grant from the NSF is a game-changer, accelerating the path to market for this transformative technology," Kyle Judah, executive director of Lilie, added in the release.

The Liu Idea Lab for Innovation and Entrepreneurship at Rice University has named its 2025 Rice Innovation Fellows cohort. Photo via Rice University

7 top Houston researchers join Rice innovation cohort for 2025

top of class

The Liu Idea Lab for Innovation and Entrepreneurship (Lilie) has announced its 2025 Rice Innovation Fellows cohort, which includes students developing cutting-edge thermal management solutions for artificial intelligence, biomaterial cell therapy for treating lymphedema, and other innovative projects.

The program aims to support Rice Ph.D. students and postdocs in turning their research into real-world solutions and startups.

“Our fourth cohort of fellows spans multiple industries addressing the most pressing challenges of humanity,” Kyle Judah, Lilie’s executive director, said in a news release. “We see seven Innovation Fellows and their professors with the passion and a path to change the world.”

The seven 2025 Innovation Fellows are:

Chen-Yang Lin, Materials Science and Nanoengineering, Ph.D. 2025

Professor Jun Lou’s Laboratory

Lin is a co-founder of HEXAspec, a startup that focuses on creating thermal management solutions for artificial intelligence chips and high-performance semiconductor devices. The startup won the prestigious H. Albert Napier Rice Launch Challenge (NRLC) competition last year and also won this year's Energy Venture Day and Pitch Competition during CERAWeek in the TEX-E student track.

Sarah Jimenez, Bioengineering, Ph.D. 2027

Professor Camila Hochman-Mendez Laboratory

Jimenez is working to make transplantable hearts out of decellularized animal heart scaffolds in the lab and the creating an automated cell delivery system to “re-cellularize” hearts with patient-derived stem cells.

Alexander Lathem, Applied Physics and Chemistry, Ph.D. 2026

Professor James M. Tour Laboratory

Lathem’s research is focused on bringing laser-induced graphene technology from “academia into industry,” according to the university.

Dilrasbonu Vohidova is a Bioengineering, Ph.D. 2027

Professor Omid Veiseh Laboratory

Vohidova’s research focuses on engineering therapeutic cells to secrete immunomodulators, aiming to prevent the onset of autoimmunity in Type 1 diabetes.

Alexandria Carter, Bioengineering, Ph.D. 2027

Professor Michael King Laboratory

Carter is developing a device that offers personalized patient disease diagnostics by using 3D culturing and superhydrophobicity.

Alvaro Moreno Lozano, Bioengineering, Ph.D. 2027

Professor Omid Veiseh Lab

Lozano is using novel biomaterials and cell engineering to develop new technologies for patients with Type 1 Diabetes. The work aims to fabricate a bioartificial pancreas that can control blood glucose levels.

Lucas Eddy, Applied Physics and Chemistry, Ph.D. 2025

Professor James M. Tour Laboratory

Eddy specializes in building and using electrothermal reaction systems for nanomaterial synthesis, waste material upcycling and per- and polyfluoroalkyl substances (PFAS) destruction.

This year, the Liu Lab also introduced its first cohort of five commercialization fellows. See the full list here.

The Rice Innovation Fellows program assists doctoral students and postdoctoral researchers with training and support to turn their ideas into ventures. Alumni have raised over $20 million in funding and grants, according to Lilie. Last year's group included 10 doctoral and postdoctoral students working in fields such as computer science, mechanical engineering and materials science.

“The Innovation Fellows program helps scientist-led startups accelerate growth by leveraging campus resources — from One Small Step grants to the Summer Venture Studio accelerator — before launching into hubs like Greentown Labs, Helix Park and Rice’s new Nexus at The Ion,” Yael Hochberg, head of the Rice Entrepreneurship Initiative and the Ralph S. O’Connor Professor in Entrepreneurship, said in the release. “These ventures are shaping Houston’s next generation of pillar companies, keeping our city, state and country at the forefront of innovation in mission critical industries.”

The $2.5 million in NSF funding will allow Rice to increase the number of students in the Rice Emerging Scholars Program. Photo via rice.edu

Houston university lands $2.5M grant to expand STEM scholarship program for underserved communities

evolving inclusivity

Rice University will expand its Rice Emerging Scholars Program (RESP) over the next two years thanks to a recent grant from the National Science Foundation.

The $2.5 million in NSF funding will allow Rice to increase the number of scholars the RESP offers from 40 to 50 students this summer and to 60 students in 2025. The program works to address disparities among first-year students and to "assist students in adapting to the challenging pace, depth and rigor of the STEM curricula at Rice" through a six-week summer bridge program and ongoing mentorship, according to a statement from the university. Summer tuition scholarships, housing subsidies and research stipends are also provided.

Rice estimates that roughly 20 percent of its undergraduate population comes from families with limited financial resources, and 12 percent of students are the first in their families to attend college.

“Low-income students, especially those who are first-generation, face unique obstructions to pursuing college STEM degrees,” said Senior associate provost Matthew Taylor, a co-principal investigator on the grant. “RESP and Rice University are committed to eliminating these obstructions and ensuring that all students have the opportunity to thrive and achieve their academic and professional aspirations.”

Taylor created the program with Professor Emeritus of Mathematics Mike Wolf in 2012. It has since worked with more than 400 RESP scholars, according to the program's website. Most (about 79 percent) graduate with STEM degrees and an overwhelming 90 percent of RESP scholars graduate in four years, according to recent data.

“Rice recognizes the challenges faced by students from low-income backgrounds,” Angel Martí, chair and professor of chemistry, faculty director of RESP and principal investigator of the grant, said in a statement. “RESP aims to empower these students to achieve their academic and professional aspirations as future scientists and engineers.”

Earlier this year, the NSF also awarded Rice assistant professor Amanda Marciel $670,406 through its highly competitive CAREER Awards to continue her research in designing branch elastomers.

Marciel was also named to the 2024 cohort of Rice Innovation Fellows through the university's Office of Innovation and The Liu Idea Lab for Innovation and Entrepreneurship (or Lilie). The group includes 10 Ph.D. and postdoctoral students who aim to translate research into real-world startups.
In addition to supporting Amanda Marciel's research, the funds will also go toward creating opportunities in soft matter research for undergraduates and underrepresented scientists at Rice University. Photo by Gustavo Raskosky/Rice University

Houston professor earns competitive NSF award, nearly $700,000 grant

science supported

An assistant professor at Rice University has won one of the highly competitive National Science Foundation's CAREER Awards.

The award grants $670,406 over five years to Amanda Marciel, the William Marsh Rice Trustee Chair of chemical and biomolecular engineering, to continue her research in designing branch elastomers that return to their original shape after being stretched, according to a statement from Rice. The research has applications in stretchable electronics and biomimetic tissues.

“My goal is to create a new paradigm for designing elastomers,” Marciel said in a statement. “The research has four aims: to determine the role of comb polymer topology in forming elastomers, understanding the effects of that topology on elastomer mechanics, characterizing its effects on elastomer structure and increasing the intellectual diversity in soft matter research.”

Marciel, who joined the faculty at Rice in 2019, is one of about 500 researchers to receive the NSF's CAREER Award each year. The award recognizes early-career faculty members who “have the potential to serve as academic role models in research and education and to lead advances in the mission of their department or organization,” according to the NSF.

In addition to supporting Marciel's research, the funds will also go toward creating opportunities in soft matter research for undergraduates and underrepresented scientists. It will establish a new annual symposium called the Texas Soft Matter Meeting, where community college teachers can participate in a soft matter laboratory module and students in the Research Experiences for Undergrads program at Rice will present their summer research.

Recently, Rice also launched the new Rice Synthetic Biology Institute, which aims to strengthen the synthetic biology community across disciplines at the university. It is part of an $82 million investment the university put toward synthetic biology, neuroengineering and physical biology in 2018.

A fellow team or Rice researcher is also working on wearable haptic accessories. A member of the team was recently named to the 2024 cohort of Rice Innovation Fellows. Click here to learn more.

For the third year, Rice University has tapped 10 Rice Innovation Fellows working in engineering and materials science fields to support. Photo via rice.edu

10 Houston scientists named to fellowship for turning research into businesses

top of class

Rice University has announced its latest cohort of fellows who aim to translate research into real-world startups.

The 2024 cohort of Rice Innovation Fellows is the third of its kind since the university's Office of Innovation and The Liu Idea Lab for Innovation and Entrepreneurship (or Lilie) launched the program in 2022. The group includes 10 Ph.D. and postdoctoral students working in engineering and materials science fields.

The program provides personalized mentorship and up to $20,000 equity-free funding.

According to Lilie, the 10 members of the 2024 cohort are:

  • Barclay Jumet, a Ph.D. candidate in the department of mechanical engineering, working under Dan Preston and specializing in mechanics, thermal systems and wearable technologies. InnovationMap covered his recent technology here.
  • Tianshu Zhai, a Ph.D. student studying materials science specializing in hexagonal boron nitride-based thermal interface materials
  • Zachary Kingston, a postdoctoral research associate and lab manager for the Kavraki Lab in the Computer Science department at Rice, working under the direction of Dr. Lydia Kavraki, a pioneer in the field of robot motion planning. Kingston is developing a novel approach to high-performance, low-cost robot motion planning with Wil Thomason.
  • Soobin Cho, a Ph.D. student and co-founder of Duromem, which created the Dual-Role Electrically Conductive Membrane to improve existing water treatment systems
  • Sara Abouelniaj, a Ph.D. candidate in Material Science and Nanoengineering and founder of Graphene Grids LLC, which is exploring opportunities to diversify its range of grid types services offered
  • Alisha Menon, is founding a medical device startup that's developing wireless, AI-enabled patient monitoring devices for babies in the NICU. Her work is being done in collaboration with the Texas Medical Center and Rice, with support from NSF and the Southwest Pediatric Device Consortium.
  • Wil Thomason, a CRA Computing Innovation postdoctoral fellow in the Kavraki Lab at Rice University who is developing low-cost robot motion planning with Kingston
  • Jeremy Daum, a Ph.D. candidate at Rice in the Materials Science department working on a a novel production method to create photocatalysts
  • Jonathan Montes, a Ph.D. candidate in Bioengineering focused on combating neurodegenerative diseases with highly selective neuromodulation
  • Andrew (AJ) Walters, a Ph.D. student in Bioengineering working in the labs of Dr. Caleb Bashor (Rice) and Dr. Scott Olson (UTHealth Houston McGovern Medical School) who's building an accessible allogeneic cell therapy to treat inflammation disorders and potentially cancer. He was awarded a three-year NSF Graduate Research Fellowship in 2022.

Over the last three years, Innovation Fellows have brought in more than $6 million in funding for their ventures, according to Rice.

Last year, the cohort of 10 included doctoral and postdoctoral students working in fields from bioengineering and chemistry to civil and environmental engineering.

Late last year, Lilie also announced its new entrepreneurship council known as Lilie’s Leadership Council. The group is made up of 11 successful business leaders with ties to Houston from the likes of co-founder Frank Liu to former Houston Mayor Annise Parker and several other CEOs and board members of successful companies. The council members agreed to donate time and money to the university’s entrepreneurship programs.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston wearable biosensing company closes $13M pre-IPO round

fresh funding

Wellysis, a Seoul, South Korea-headquartered wearable biosensing company with its U.S. subsidiary based in Houston, has closed a $13.5 million pre-IPO funding round and plans to expand its Texas operations.

The round was led by Korea Investment Partners, Kyobo Life Insurance, Kyobo Securities, Kolon Investment and a co-general partner fund backed by SBI Investment and Samsung Securities, according to a news release.

Wellysis reports that the latest round brings its total capital raised to about $30 million. The company is working toward a Korea Securities Dealers Automated Quotations listing in Q4 2026 or Q1 2027.

Wellysis is known for its continuous ECG/EKG monitor with AI reporting. Its lightweight and waterproof S-Patch cardiac monitor is designed for extended testing periods of up to 14 days on a single battery charge.

The company says that the funding will go toward commercializing the next generation of the S-Patch, known as the S-Patch MX, which will be able to capture more than 30 biometric signals, including ECG, temperature and body composition.

Wellysis also reports that it will use the funding to expand its Houston-based operations, specifically in its commercial, clinical and customer success teams.

Additionally, the company plans to accelerate the product development of two other biometric products:

  • CardioAI, an AI-powered diagnostic software platform designed to support clinical interpretation, workflow efficiency and scalable cardiac analysis
  • BioArmour, a non-medical biometric monitoring solution for the sports, public safety and defense sectors

“This pre-IPO round validates both our technology and our readiness to scale globally,” Young Juhn, CEO of Wellysis, said in the release. “With FDA-cleared solutions, expanding U.S. operations, and a strong AI roadmap, Wellysis is positioned to redefine how cardiac data is captured, interpreted, and acted upon across healthcare systems worldwide.”

Wellysis was founded in 2019 as a spinoff of Samsung. Its S-Patch runs off of a Samsung Smart Health Processor. The company's U.S. subsidiary, Wellysis USA Inc., was established in Houston in 2023 and was a resident of JLABS@TMC.

Elon Musk vows to launch solar-powered data centers in space

To Outer Space

Elon Musk vowed this week to upend another industry just as he did with cars and rockets — and once again he's taking on long odds.

The world's richest man said he wants to put as many as a million satellites into orbit to form vast, solar-powered data centers in space — a move to allow expanded use of artificial intelligence and chatbots without triggering blackouts and sending utility bills soaring.

To finance that effort, Musk combined SpaceX with his AI business on Monday, February 2, and plans a big initial public offering of the combined company.

“Space-based AI is obviously the only way to scale,” Musk wrote on SpaceX’s website, adding about his solar ambitions, “It’s always sunny in space!”

But scientists and industry experts say even Musk — who outsmarted Detroit to turn Tesla into the world’s most valuable automaker — faces formidable technical, financial and environmental obstacles.

Feeling the heat

Capturing the sun’s energy from space to run chatbots and other AI tools would ease pressure on power grids and cut demand for sprawling computing warehouses that are consuming farms and forests and vast amounts of water to cool.

But space presents its own set of problems.

Data centers generate enormous heat. Space seems to offer a solution because it is cold. But it is also a vacuum, trapping heat inside objects in the same way that a Thermos keeps coffee hot using double walls with no air between them.

“An uncooled computer chip in space would overheat and melt much faster than one on Earth,” said Josep Jornet, a computer and electrical engineering professor at Northeastern University.

One fix is to build giant radiator panels that glow in infrared light to push the heat “out into the dark void,” says Jornet, noting that the technology has worked on a small scale, including on the International Space Station. But for Musk's data centers, he says, it would require an array of “massive, fragile structures that have never been built before.”

Floating debris

Then there is space junk.

A single malfunctioning satellite breaking down or losing orbit could trigger a cascade of collisions, potentially disrupting emergency communications, weather forecasting and other services.

Musk noted in a recent regulatory filing that he has had only one “low-velocity debris generating event" in seven years running Starlink, his satellite communications network. Starlink has operated about 10,000 satellites — but that's a fraction of the million or so he now plans to put in space.

“We could reach a tipping point where the chance of collision is going to be too great," said University at Buffalo's John Crassidis, a former NASA engineer. “And these objects are going fast -- 17,500 miles per hour. There could be very violent collisions."

No repair crews

Even without collisions, satellites fail, chips degrade, parts break.

Special GPU graphics chips used by AI companies, for instance, can become damaged and need to be replaced.

“On Earth, what you would do is send someone down to the data center," said Baiju Bhatt, CEO of Aetherflux, a space-based solar energy company. "You replace the server, you replace the GPU, you’d do some surgery on that thing and you’d slide it back in.”

But no such repair crew exists in orbit, and those GPUs in space could get damaged due to their exposure to high-energy particles from the sun.

Bhatt says one workaround is to overprovision the satellite with extra chips to replace the ones that fail. But that’s an expensive proposition given they are likely to cost tens of thousands of dollars each, and current Starlink satellites only have a lifespan of about five years.

Competition — and leverage

Musk is not alone trying to solve these problems.

A company in Redmond, Washington, called Starcloud, launched a satellite in November carrying a single Nvidia-made AI computer chip to test out how it would fare in space. Google is exploring orbital data centers in a venture it calls Project Suncatcher. And Jeff Bezos’ Blue Origin announced plans in January for a constellation of more than 5,000 satellites to start launching late next year, though its focus has been more on communications than AI.

Still, Musk has an edge: He's got rockets.

Starcloud had to use one of his Falcon rockets to put its chip in space last year. Aetherflux plans to send a set of chips it calls a Galactic Brain to space on a SpaceX rocket later this year. And Google may also need to turn to Musk to get its first two planned prototype satellites off the ground by early next year.

Pierre Lionnet, a research director at the trade association Eurospace, says Musk routinely charges rivals far more than he charges himself —- as much as $20,000 per kilo of payload versus $2,000 internally.

He said Musk’s announcements this week signal that he plans to use that advantage to win this new space race.

“When he says we are going to put these data centers in space, it’s a way of telling the others we will keep these low launch costs for myself,” said Lionnet. “It’s a kind of powerplay.”

Johnson Space Center and UT partner to expand research, workforce development

onward and upward

NASA’s Johnson Space Center in Houston has forged a partnership with the University of Texas System to expand collaboration on research, workforce development and education that supports space exploration and national security.

“It’s an exciting time for the UT System and NASA to come together in new ways because Texas is at the epicenter of America’s space future. It’s an area where America is dominant, and we are committed as a university system to maintaining and growing that dominance,” Dr. John Zerwas, chancellor of the UT System, said in a news release.

Vanessa Wyche, director of Johnson Space Center, added that the partnership with the UT System “will enable us to meet our nation’s exploration goals and advance the future of space exploration.”

The news release noted that UT Health Houston and the UT Medical Branch in Galveston already collaborate with NASA. The UT Medical Branch’s aerospace medicine residency program and UT Health Houston’s space medicine program train NASA astronauts.

“We’re living through a unique moment where aerospace innovation, national security, economic transformation, and scientific discovery are converging like never before in Texas," Zerwas said. “UT institutions are uniquely positioned to partner with NASA in building a stronger and safer Texas.”

Zerwas became chancellor of the UT System in 2025. He joined the system in 2019 as executive vice chancellor for health affairs. Zerwas represented northwestern Ford Bend County in the Texas House from 2007 to 2019.

In 1996, he co-founded a Houston-area medical practice that became part of US Anesthesia Partners in 2012. He remained active in the practice until joining the UT System. Zerwas was chief medical officer of the Memorial Hermann Hospital System from 2003 to 2008 and was its chief physician integration officer until 2009.

Zerwas, a 1973 graduate of the Houston area’s Bellaire High School, is an alumnus of the University of Houston and Baylor College of Medicine.