The $2.5 million in NSF funding will allow Rice to increase the number of students in the Rice Emerging Scholars Program. Photo via rice.edu

Rice University will expand its Rice Emerging Scholars Program (RESP) over the next two years thanks to a recent grant from the National Science Foundation.

The $2.5 million in NSF funding will allow Rice to increase the number of scholars the RESP offers from 40 to 50 students this summer and to 60 students in 2025. The program works to address disparities among first-year students and to "assist students in adapting to the challenging pace, depth and rigor of the STEM curricula at Rice" through a six-week summer bridge program and ongoing mentorship, according to a statement from the university. Summer tuition scholarships, housing subsidies and research stipends are also provided.

Rice estimates that roughly 20 percent of its undergraduate population comes from families with limited financial resources, and 12 percent of students are the first in their families to attend college.

“Low-income students, especially those who are first-generation, face unique obstructions to pursuing college STEM degrees,” said Senior associate provost Matthew Taylor, a co-principal investigator on the grant. “RESP and Rice University are committed to eliminating these obstructions and ensuring that all students have the opportunity to thrive and achieve their academic and professional aspirations.”

Taylor created the program with Professor Emeritus of Mathematics Mike Wolf in 2012. It has since worked with more than 400 RESP scholars, according to the program's website. Most (about 79 percent) graduate with STEM degrees and an overwhelming 90 percent of RESP scholars graduate in four years, according to recent data.

“Rice recognizes the challenges faced by students from low-income backgrounds,” Angel Martí, chair and professor of chemistry, faculty director of RESP and principal investigator of the grant, said in a statement. “RESP aims to empower these students to achieve their academic and professional aspirations as future scientists and engineers.”

Earlier this year, the NSF also awarded Rice assistant professor Amanda Marciel $670,406 through its highly competitive CAREER Awards to continue her research in designing branch elastomers.

Marciel was also named to the 2024 cohort of Rice Innovation Fellows through the university's Office of Innovation and The Liu Idea Lab for Innovation and Entrepreneurship (or Lilie). The group includes 10 Ph.D. and postdoctoral students who aim to translate research into real-world startups.
In addition to supporting Amanda Marciel's research, the funds will also go toward creating opportunities in soft matter research for undergraduates and underrepresented scientists at Rice University. Photo by Gustavo Raskosky/Rice University

Houston professor earns competitive NSF award, nearly $700,000 grant

science supported

An assistant professor at Rice University has won one of the highly competitive National Science Foundation's CAREER Awards.

The award grants $670,406 over five years to Amanda Marciel, the William Marsh Rice Trustee Chair of chemical and biomolecular engineering, to continue her research in designing branch elastomers that return to their original shape after being stretched, according to a statement from Rice. The research has applications in stretchable electronics and biomimetic tissues.

“My goal is to create a new paradigm for designing elastomers,” Marciel said in a statement. “The research has four aims: to determine the role of comb polymer topology in forming elastomers, understanding the effects of that topology on elastomer mechanics, characterizing its effects on elastomer structure and increasing the intellectual diversity in soft matter research.”

Marciel, who joined the faculty at Rice in 2019, is one of about 500 researchers to receive the NSF's CAREER Award each year. The award recognizes early-career faculty members who “have the potential to serve as academic role models in research and education and to lead advances in the mission of their department or organization,” according to the NSF.

In addition to supporting Marciel's research, the funds will also go toward creating opportunities in soft matter research for undergraduates and underrepresented scientists. It will establish a new annual symposium called the Texas Soft Matter Meeting, where community college teachers can participate in a soft matter laboratory module and students in the Research Experiences for Undergrads program at Rice will present their summer research.

Recently, Rice also launched the new Rice Synthetic Biology Institute, which aims to strengthen the synthetic biology community across disciplines at the university. It is part of an $82 million investment the university put toward synthetic biology, neuroengineering and physical biology in 2018.

A fellow team or Rice researcher is also working on wearable haptic accessories. A member of the team was recently named to the 2024 cohort of Rice Innovation Fellows. Click here to learn more.

For the third year, Rice University has tapped 10 Rice Innovation Fellows working in engineering and materials science fields to support. Photo via rice.edu

10 Houston scientists named to fellowship for turning research into businesses

top of class

Rice University has announced its latest cohort of fellows who aim to translate research into real-world startups.

The 2024 cohort of Rice Innovation Fellows is the third of its kind since the university's Office of Innovation and The Liu Idea Lab for Innovation and Entrepreneurship (or Lilie) launched the program in 2022. The group includes 10 Ph.D. and postdoctoral students working in engineering and materials science fields.

The program provides personalized mentorship and up to $20,000 equity-free funding.

According to Lilie, the 10 members of the 2024 cohort are:

  • Barclay Jumet, a Ph.D. candidate in the department of mechanical engineering, working under Dan Preston and specializing in mechanics, thermal systems and wearable technologies. InnovationMap covered his recent technology here.
  • Tianshu Zhai, a Ph.D. student studying materials science specializing in hexagonal boron nitride-based thermal interface materials
  • Zachary Kingston, a postdoctoral research associate and lab manager for the Kavraki Lab in the Computer Science department at Rice, working under the direction of Dr. Lydia Kavraki, a pioneer in the field of robot motion planning. Kingston is developing a novel approach to high-performance, low-cost robot motion planning with Wil Thomason.
  • Soobin Cho, a Ph.D. student and co-founder of Duromem, which created the Dual-Role Electrically Conductive Membrane to improve existing water treatment systems
  • Sara Abouelniaj, a Ph.D. candidate in Material Science and Nanoengineering and founder of Graphene Grids LLC, which is exploring opportunities to diversify its range of grid types services offered
  • Alisha Menon, is founding a medical device startup that's developing wireless, AI-enabled patient monitoring devices for babies in the NICU. Her work is being done in collaboration with the Texas Medical Center and Rice, with support from NSF and the Southwest Pediatric Device Consortium.
  • Wil Thomason, a CRA Computing Innovation postdoctoral fellow in the Kavraki Lab at Rice University who is developing low-cost robot motion planning with Kingston
  • Jeremy Daum, a Ph.D. candidate at Rice in the Materials Science department working on a a novel production method to create photocatalysts
  • Jonathan Montes, a Ph.D. candidate in Bioengineering focused on combating neurodegenerative diseases with highly selective neuromodulation
  • Andrew (AJ) Walters, a Ph.D. student in Bioengineering working in the labs of Dr. Caleb Bashor (Rice) and Dr. Scott Olson (UTHealth Houston McGovern Medical School) who's building an accessible allogeneic cell therapy to treat inflammation disorders and potentially cancer. He was awarded a three-year NSF Graduate Research Fellowship in 2022.

Over the last three years, Innovation Fellows have brought in more than $6 million in funding for their ventures, according to Rice.

Last year, the cohort of 10 included doctoral and postdoctoral students working in fields from bioengineering and chemistry to civil and environmental engineering.

Late last year, Lilie also announced its new entrepreneurship council known as Lilie’s Leadership Council. The group is made up of 11 successful business leaders with ties to Houston from the likes of co-founder Frank Liu to former Houston Mayor Annise Parker and several other CEOs and board members of successful companies. The council members agreed to donate time and money to the university’s entrepreneurship programs.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

United breaks ground on $177 million facility and opens tech center at IAH

off the ground

United Airlines announced new infrastructure investments at George Bush Intercontinental Airport as part of the company’s ongoing $3.5 billion investment into IAH.

United broke ground on a new $177 million Ground Service Equipment (GSE) Maintenance Facility this week that will open in 2027.

The 140,000-square-foot GSE facility will support over 1,800 ground service vehicles and with expansive repair space, shop space and storage capacity. The GSE facility will also be targeted for LEED Silver certification. United believes this will provide more resources to assist with charging batteries, fabricating metal and monitoring electronic controls with improved infrastructure and modern workspaces.

Additionally, the company opened its new $16 million Technical Operations Training Center.

The center will include specialized areas for United's growing fleet, and advanced simulation technology that includes scenario-based engine maintenance and inspection training. By 2032, the Training Center will accept delivery of new planes. This 91,000-square-foot facility will include sheet metal and composite training shops as well.

The Training Center will also house a $6.3 million Move Team Facility, which is designed to centralize United's Super Tug operations. United’s IAH Move Team manages over 15 Super Tugs across the airfield, which assist with moving hundreds of aircraft to support flight departures, remote parking areas, and Technical Operations Hangars.

The company says it plans to introduce more than 500 new aircraft into its fleet, and increase the total number of available seats per domestic departure by nearly 30%. United also hopes to reduce carbon emissions per seat and create more unionized jobs by 2026.

"With these new facilities, Ground Service Equipment Maintenance Facility and the Technical Operations Training Center, we are enhancing our ability to maintain a world-class fleet while empowering our employees with cutting-edge tools and training,” Phil Griffith, United's Vice President of Airport Operations, said in a news release. “This investment reflects our long-term vision for Houston as a critical hub for United's operations and our commitment to sustainability, efficiency, and growth."

UH study uncovers sustainable farming methods for hemp production

growth plan

A new University of Houston study of hemp microbes can potentially assist scientists in creating special mixtures of microbes to make hemp plants produce more CBD or have better-quality fibers.

The study, led by Abdul Latif Khan, an assistant professor of biotechnology at the Cullen College of Engineering Technology Division, was published in the journal Scientific Reports from the Nature Publishing Group. The team also included Venkatesh Balan, UH associate professor of biotechnology at the Cullen College of Engineering Technology Division; Aruna Weerasooriya, professor of medicinal plants at Prairie View A&M University; and Ram Ray, professor of agronomy at Prairie View A&M University.

The study examined microbiomes living in and around the roots (rhizosphere) and on the leaves (phyllosphere) of four types of hemp plants. The team at UH compared how these microorganisms differ between hemp grown for fiber and hemp grown for CBD production.

“In hemp, the microbiome is important in terms of optimizing the production of CBD and enhancing the quality of fiber,” Khan said in a news release. “This work explains how different genotypes of hemp harbor microbial communities to live inside and contribute to such processes. We showed how different types of hemp plants have their own special groups of tiny living microbes that help the plants grow and stay healthy.”

The study indicates that hemp cultivation can be improved by better understanding these distinct microbial communities, which impact growth, nutrient absorption, stress resilience, synthesis and more. This could help decrease the need for chemical inputs and allow growers to use more sustainable agricultural practices.

“Understanding these microorganisms can also lead to more sustainable farming methods, using nature to boost plant growth instead of relying heavily on chemicals,” Ahmad, the paper’s first author and doctoral student of Khan’s, said the news release.

Other findings in the study included higher fungal diversity in leaves and stems, higher bacterial diversity in roots and soil, and differing microbiome diversity. According to UH, CBD-rich varieties are currently in high demand for pharmaceutical products, and fiber-rich varieties are used in industrial applications like textiles.