A Rice research team is tapping into materials science to better understand Alzheimer’s disease, a UH professor is developing a treatment for hereditary vision loss, and a BCM researcher is looking at stress and brain cancer. Photo by Gustavo Raskosky/Rice University

Research, perhaps now more than ever, is crucial to expanding and growing innovation in Houston — and it's happening across the city right under our noses.

In InnovationMap's latest roundup of research news, three Houston institutions are working on life-saving health care research thanks to new technologies.

Rice University scientists' groundbreaking alzheimer's study

Angel Martí (right) and his co-authors (from left) Utana Umezaki and Zhi Mei Sonia He have published their latest findings on Alzheimer’s disease. Photo by Gustavo Raskosky/Rice University

According to the Centers for Disease Control and Prevention, Alzheimer’s disease will affect nearly 14 million people in the U.S. by 2060. A group of scientists from Rice University are looking into a peptide associated with the disease, and their study was published in Chemical Science.

Angel Martí — a professor of chemistry, bioengineering, and materials science and nanoengineering and faculty director of the Rice Emerging Scholars Program — and his team have developed a new approach using time-resolved spectroscopy and computational chemistry, according to a news release from Rice. The scientists "found experimental evidence of an alternative binding site on amyloid-beta aggregates, opening the door to the development of new therapies for Alzheimer’s and other diseases associated with amyloid deposits."

Amyloid plaque deposits in the brain are a main feature of Alzheimer’s, per Rice.

“Amyloid-beta is a peptide that aggregates in the brains of people that suffer from Alzheimer’s disease, forming these supramolecular nanoscale fibers, or fibrils” says Martí in the release. “Once they grow sufficiently, these fibrils precipitate and form what we call amyloid plaques.

“Understanding how molecules in general bind to amyloid-beta is particularly important not only for developing drugs that will bind with better affinity to its aggregates, but also for figuring out who the other players are that contribute to cerebral tissue toxicity,” he adds.

The National Science Foundation and the family of the late Professor Donald DuPré, a Houston-born Rice alumnus and former professor of chemistry at the University of Louisville, supported the research, which is explained more thoroughly on Rice's website.

University of Houston professor granted $1.6M for gene therapy treatment for rare eye disease

Muna Naash, a professor at UH, is hoping her research can result in treatment for a rare genetic disease that causes vision loss. Photo via UH.edu

A University of Houston researcher is working on a way to restore sight to those suffering from a rare genetic eye disease.

Muna Naash, the John S. Dunn Endowed Professor of biomedical engineering at UH, is expanding a method of gene therapy to potentially treat vision loss in patients with Usher Syndrome Type 2A, or USH2A, a rare genetic disease.

Naash has received a $1.6 million grant from the National Eye Institute to support her work. Mutations of the USH2A gene can include hearing loss from birth and progressive loss of vision, according to a news release from UH. Naash's work is looking at applying gene therapy — the introduction of a normal gene into cells to correct genetic disorders — to treat this genetic disease. There is not currently another treatment for USH2A.

“Our goal is to advance our current intravitreal gene therapy platform consisting of DNA nanoparticles/hyaluronic acid nanospheres to deliver large genes in order to develop safe and effective therapies for visual loss in Usher Syndrome Type 2A,” says Naash. “Developing an effective treatment for USH2A has been challenging due to its large coding sequence (15.8 kb) that has precluded its delivery using standard approaches and the presence of multiple isoforms with functions that are not fully understood."

BCM researcher on the impact of stress

This Baylor researcher is looking at the relationship between stress and brain cancer thanks to a new grant. Photo via Andriy Onufriyenko/Getty Images

Stress can impact the human body in a number of ways — from high blood pressure to hair loss — but one Houston scientist is looking into what happens to bodies in the long term, from age-related neurodegeneration to cancer.

Dr. Steven Boeynaems is assistant professor of molecular and human genetics at Baylor College of Medicine. His lab is located at the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, and he also is a part of the Therapeutic Innovation Center, the Center for Alzheimer’s and Neurodegenerative Diseases, and the Dan L Duncan Comprehensive Cancer Center at Baylor.

Recently, the Cancer Prevention and Research Institute of Texas, or CPRIT, awarded Boeynaems a grant to continue his work studying how cells and organisms respond to stress.

“Any cell, in nature or in our bodies, during its existence, will have to deal with some conditions that deviate from its ideal environment,” Boeynaems says in a BCM press release. “The key issue that all cells face in such conditions is that they can no longer properly fold their proteins, and that leads to the abnormal clumping of proteins into aggregates. We have seen such aggregates occur in many species and under a variety of stress-related conditions, whether it is in a plant dealing with drought or in a human patient with aging-related Alzheimer’s disease."

Now, thanks to the CPRIT funding, he says his lab will now also venture into studying the role of cellular stress in brain cancer.

“A tumor is a very stressful environment for cells, and cancer cells need to continuously adapt to this stress to survive and/or metastasize,” he says in the release.

“Moreover, the same principles of toxic protein aggregation and protection through protein droplets seem to be at play here as well,” he continues. “We have studied protein droplets not only in humans but also in stress-tolerant organisms such as plants and bacteria for years now. We propose to build and leverage on that knowledge to come up with innovative new treatments for cancer patients.”

Here's what researchers raked in the cash to support their research. Photo via Getty Images

Fresh funds: 2 Houston organizations dole grants to advance research

research roundup

Funding fuels the research that supports the innovations of tomorrow. Two Houston-based scientific organizations announced funding recipients that are working on advancing research in space health and chemistry.

4 research teams receive funds to advance space health work

The Translational Research Institute for Space Health, known as TRISH, at Baylor College of Medicine has announced almost $4 million in grants to four research teams. As more and more plans to launch humans into space continue to develop, TRISH is working to support research addressing human health in space.

TRISH's Biomedical Research Advances for Space Health initiative looked for new ways to reduce potential damage from the environment through manipulation of human metabolism and the normal state-of-being at the cellular or whole organism level, according to a press release.

"These outstanding awardees brought cutting-edge proposals to the table. Each project provides a unique opportunity to advance human health research on the bleeding edge of science fiction," says TRISH Executive Director, Dorit Donoviel, in the release. "This creative research has the potential to protect all humans through advancing tissue transplantation or helping patients that have medical conditions such as heart or brain damage that could be aided by reducing cellular activity."

The awardees, who will begin their TRISH-funded research in April 2022, for BRASH 2101 included:

  • Clifton Callaway, M.D., Ph.D., University of Pittsburgh, Pennsylvania
    • Cold-Sleep for Long Duration Spaceflight
  • Tammy Chang, M.D., Ph.D., University of California, San Francisco
    • The Effect of Isochoric Supercooling on Human Liver Metabolic Function
  • Allyson Hindle, Ph.D., University of Nevada, Las Vegas
    • Can Humans Hibernate at Warm Temperatures?
  • Christopher Porada, Ph.D., Wake Forest University, Winston-Salem, North Carolina
    • Using Human Organoids and Fossilized Remains from Extinct Hominins to Unlock the Secrets of Torpor/Hibernation

Houston organization names 2021 award recipient

The Welch Foundation has named professor Chi-Huey Wong as the 2021 recipient of the Robert A. Welch Award in Chemistry. Wong is a leader in synthetic chemistry and chemical biology. Specifically, the award recognizes Wong for his development of new methods for the synthesis of complex carbohydrates and glycoproteins and the elucidation of carbohydrate-mediated biological recognition associated with disease progression, according to a press release.

"The mission of The Welch Foundation is to improve the lives of others through the advancement of chemical research, and Dr. Wong has been working towards that goal for decades," says Carin Barth, chair and director of The Welch Foundation Board of Directors. "Not only has he made revolutionary advances in chemistry and biology, but his methodologies will facilitate new drug and vaccine developments for years to come."

Wong is the Scripps Family Chair Professor in the Department of Chemistry at The Scripps Research Institute. He will receive $500,000 to advance his research. Houston-based Welch Foundation has contributed more than $1.1 billion to the advancement of chemistry since 1954.

From advanced computation to robots, Rice University, the University of Houston, and Houston Methodist are all working on using technology for medical innovation. Graphic via Getty Images

Houston researchers tap into tech to provide new brain-related health care solutions

research roundup

Research, perhaps now more than ever, is crucial to expanding and growing innovation in Houston — and it's happening across the city right under our noses.

In InnovationMap's latest roundup of research news, three Houston institutions are working on brain-related health care solutions thanks to technologies.

University of Houston research team focused on brain injury treatment through computation

Badri Roysam and his team at the University of Houston are working with the National Institute of Health to develop tools to treat concussions and brain injuries. Photo via uh.edu

A University of Houston researcher is tapping into technology to better treat brain injuries and conditions that scientists have not yet figured out treatment for. Badri Roysam, the current chair of electrical and computer engineering at UH and a Hugh Roy and Lillie Cranz Cullen University Professor, and his team have created a new computational image analysis methods based on deep neural networks.

"We are interested in mapping and profiling unhealthy and drug-treated brain tissue in unprecedented detail to reveal multiple biological processes at once - in context," Roysam says in a UH press release about his latest paper published in Nature Communications. "This requires the ability to record high-resolution images of brain tissue covering a comprehensive panel of molecular biomarkers, over a large spatial extent, e.g., whole-brain slices, and automated ability to generate quantitative readouts of biomarker expression for all cells."

Roysam's system, which was developed at the the National Institute of Neurological Disorders and Stroke, analyzes the images on UH's supercomputer automatically and can reveal multiple processes at once – the brain injury, effects of the drug being tested and the potential side effects of the drug, per the release.

"Compared to existing screening techniques, using iterative immunostaining and computational analysis, our methods are more flexible, scalable and efficient, enabling multiplex imaging and computational analysis of up to 10 – 100 different biomarkers of interest at the same time using direct or indirect IHC immunostaining protocols," says Roysam in the release.

The open-source toolkit, which was developed thanks to a $3.19 million grant from the National Institute of Health, is also adaptable to other tissues.

"We are efficiently overcoming the fluorescence signal limitations and achieving highly enriched and high-quality source imagery for reliable automated scoring at scale," says Roysam. "Our goal is to accelerate system-level studies of normal and pathological brains, and pre-clinical drug studies by enabling targeted and off-target drug effects to be profiled simultaneously, in context, at the cellular scale."

Houston Methodist and Rice University launch new collaboration to use robotics for clinical solutions

Rice University's Behnaam Aazhang and Marcia O'Malley are two of the people at the helm of the new center along with Houston Methodist's Dr. Gavin Britz. Photos via Rice.edu

Rice University and Houston Methodist have teamed up to create a new partnership and to launch the Center for Translational Neural Prosthetics and Interfaces in order to bring together scientists, clinicians, engineers, and surgeons to solve clinical problems with neurorobotics.

"This will be an accelerator for discovery," says the new center's co-director, Dr. Gavin Britz, chair of the Houston Methodist Department of Neurosurgery, in a news release. "This center will be a human laboratory where all of us — neurosurgeons, neuroengineers, neurobiologists — can work together to solve biomedical problems in the brain and spinal cord. And it's a collaboration that can finally offer some hope and options for the millions of people worldwide who suffer from brain diseases and injuries."

The center will have representatives from both Rice and Houston Methodist and also plans to hire three additional engineers who will have joint appointments at Houston Methodist and Rice.

"The Rice Neuroengineering Initiative was formed with this type of partnership in mind," says center co-director Behnaam Aazhang, Rice's J.S. Abercrombie Professor of Electrical and Computer Engineering, who also directs the neuroengineering initiative. "Several core members, myself included, have existing collaborations with our colleagues at Houston Methodist in the area of neural prosthetics. The creation of the Center for Translational Neural Prosthetics and Interfaces is an exciting development toward achieving our common goals."

The team will have a presence on the Rice campus with 25,000 square feet of space in the Rice Neuroengineering Initiative laboratories and experimental spaces in the university's BioScience Research Collaborative. The space at Houston Methodist is still being developed.

"This partnership is a perfect blend of talent," says Rice's Marcia O'Malley, a core member of both the new center and university initiative. "We will be able to design studies to test the efficacy of inventions and therapies and rely on patients and volunteers who want to help us test our ideas. The possibilities are limitless."

From biomolecular research to oral cancer immunotherapy, here are three research projects to watch out for in Houston. Photo via Getty Images

These 3 Houston researchers are revolutionizing health science innovation

research roundup

Research, perhaps now more than ever, is crucial to expanding and growing innovation in Houston — and it's happening across the city right under our noses.

In InnovationMap's latest roundup of research news, a couple local scientists are honored by awards while another duo of specialists tackle a new project.

University of Houston professor recognized with award

Mehmet Orman of UH has been selected to receive an award for his research on persister cells. Photo via UH.edu

Mehmet Orman, assistant professor of chemical and biomolecular engineering at the University of Houston Cullen College of Engineering has been honored with a Faculty Early Career Development Award from the National Science Foundation. The award comes with a $500,000 grant to study persister cells — cells that go dormant and then become tolerant to extraordinary levels of antibiotics.

"Nearly all bacterial cultures contain a small population of persister cells," says Orman in a news release. "Persisters are thought to be responsible for recurring chronic infections such as those of the urinary tract and for creating drug-resistant mutants."

Previously, Orman developed the first methods to directly measure the metabolism of persister cells. He also developed cell sorting strategies to segregate persisters from highly heterogeneous bacterial cell populations, and, according to the release, he will be using his methods in the NSF research project.

Houston researchers collaborate on oral cancer innovation

Dr. Simon Young of UTHealth and Jeffrey Hartgerink of Rice University are working on a new use for an innovative gel they developed. Photo via Rice.edu

Two Houston researchers — chemist and bioengineer Jeffrey Hartgerink at Rice University and Dr. Simon Young at the University of Texas Health Science Center at Houston — have again teamed up to advance their previous development of a sophisticated hydrogel called STINGel. This time, they are using it to destroy oral cancer tumors.

SynerGel combines a pair of antitumor agents into a gel that can be injected directly into tumors. Once there, the gel controls the release of its cargo to not only trigger cells' immune response but also to remove other suppressive immune cells from the tumor's microenvironment. The duo reported on the technology in the American Chemical Society journal ACS Biomaterials Science & Engineering.

SynerGel, combines a pair of antitumor agents into a gel that can be injected directly into tumors, where they not only control the release of the drugs but also remove suppressive immune cells from the tumor's microenvironment.

"We are really excited about this new material," Hartgerink says in a news release. "SynerGel is formulated from a specially synthesized peptide which itself acts as an enzyme inhibitor, but it also assembles into a nanofibrous gel that can entrap and release other drugs in a controlled fashion.

In 2018, the pair published research on the use of a multidomain peptide gel — the original STINGel — to deliver ADU-S100, an immunotherapy drug from a class of "stimulator of interferon gene (STING) agonists."

The research is supported by the Oral and Maxillofacial Surgery Foundation, the National Institutes of Health, the Welch Foundation, the National Science Foundation and the Mexican National Council for Science and Technology.

Texas Heart Institute researcher honored by national organization

Dr. James Martin of Texas Heart Institute has been named a senior member of the National Academy of Inventors. Photo courtesy of THI

The National Academy of Inventors have named Houston-based Texas Heart Institute's Dr. James Martin, director of the Cardiomyocyte Renewal Lab, a senior member.

Martin is an internationally recognized developmental and regenerative biologist and his research is focused on understanding how signaling pathways are related to development and tissue regeneration.

"Dr. Martin has long been a steward of scientific advancement and has proven to be a tremendous asset to the Texas Heart Institute and to its Cardiomyocyte Renewal Lab through his efforts to translate fundamental biological discoveries in cardiac development and disease into novel treatment strategies for cardiac regeneration," says Dr. Darren Woodside, vice president for research at THI, in a news release. "Everyone at the Texas Heart Institute is thrilled for Dr. Martin, whose induction into the NAI as a Senior Member is well-deserved."

Martin has authored over 170 peer-reviewed papers in top journals he holds nine U.S. patents and applications, including one provisional application, all of which have been licensed to Yap Therapeutics, a company he co-founded.

The full list of incoming NAI Senior Members, which includes three professionals from the University of Houston, is available on the NAI website.

From opioid research to plastics recycling, here are three research projects to watch out for in Houston. Photo via Getty Images

Here are 3 breakthrough innovations coming out of research at Houston institutions

Research Roundup

Research, perhaps now more than ever, is crucial to expanding and growing innovation in Houston — and it's happening across the city right under our noses.

In InnovationMap's latest roundup of research projects, we look into studies on robotics advancing stroke patient rehabilitation, the future of opioid-free surgery, and a breakthrough in recycling plastics.

The University of Houston's research on enhancing stroke rehabilitation

A clinical trial from a team at UH found that stroke survivors gained clinically significant arm movement and control by using an external robotic device powered by the patients' own brains. Image via UH.edu

A researcher at the University of Houston has seen positive results on using his robotics on stroke survivors for rehabilitation. Jose Luis Contreras-Vidal, director of UH's Non-Invasive Brain Machine Interface Systems Laboratory, recently published the results of the clinical trial in the journal NeuroImage: Clinical.

The testing proved that most patients retained the benefits for at least two months after the therapy sessions ended, according to a press release from UH, and suggested even more potential in the long term. The study equipped stroke survivors who have limited movement in one arm with a computer program that captures brain activity to determine the subject's intentions and then works with a robotic device affixed to the affected arm, to move in response to those intentions.

"This is a novel way to measure what is going on in the brain in response to therapeutic intervention," says Dr. Gerard Francisco, professor and chair of physical medicine and rehabilitation at McGovern Medical School at The University of Texas Health Science Center at Houston and co-principal investigator, in the release.

"This study suggested that certain types of intervention, in this case using the upper robot, can trigger certain parts of brain to develop the intention to move," he continues. "In the future, this means we can augment existing therapy programs by paying more attention to the importance of engaging certain parts of the brain that can magnify the response to therapy."

The trial was funded by the National Institute of Neurological Disorders and Stroke and Mission Connect, part of the TIRR Foundation. Contreras-Vidal is working on a longer term project with a National Science Foundation grant in order to design a low-cost system that would allow people to continue the treatments at home.

"If we are able to send them home with a device, they can use it for life," he says in the release.

Baylor College of Medicine's work toward opioid-free surgery

A local doctor is focused on opioid-free options. Photo via Getty Images

In light of a national opioid crisis and more and more data demonstrating the negative effects of the drugs, a Baylor College of Medicine orthopedic surgeon has been working to offer opioid-free surgery recovery to his patients.

"Thanks to a number of refinements, we are now able to perform hip and knee replacements, ranging from straightforward to very complex cases, without patients requiring a single opioid pill," says Dr. Mohamad Halawi, associate professor and chief quality officer in the Joseph Barnhart Department of Orthopedic Surgery, in a press release.

"Pain is one of patients' greatest fears when undergoing surgery, understandably so," Halawi continues. "Today, most patients wake up from surgery very comfortable. Gone are the days of trying to catch up with severe pain. It was a vicious cycle with patients paying the price in terms of longer hospitalization, slower recovery and myriad adverse events."

Halawi explains that his work focuses on preventative measures ahead of pain occurring as well as cutting out opioids before surgery.

"Opioid-free surgery is the way of the future, and it has become a standard of care in my practice," he says. "The ability to provide safer and faster recovery to all patients regardless of their surgical complexity is gratifying. I want to make sure that pain is one less thing for patients to worry about during their recovery."

Rice University's breakthrough on recycling plastics

A team of scientists have found a use for a material that comes out of plastics recycling. Photo via Rice.edu

Houston scientists has found a new use for an otherwise useless byproduct that comes from recycling plastics. Rice University chemist James Tour has discovered that turbostratic graphene flakes can be produced from pyrolyzed plastic ash, and those flakes can then be added to other substances like films of polyvinyl alcohol that better resist water in packaging and cement paste and concrete, as well as strengthen the material.

"This work enhances the circular economy for plastics," Tour says in a press release. "So much plastic waste is subject to pyrolysis in an effort to convert it back to monomers and oils. The monomers are used in repolymerization to make new plastics, and the oils are used in a variety of other applications. But there is always a remaining 10% to 20% ash that's valueless and is generally sent to landfills.

Tour's research has appeared in the journal Carbon. The co-authors of the study include Rice graduate students Jacob Beckham, Weiyin Chen and Prabhas Hundi and postdoctoral researcher Duy Xuan Luong, and Shivaranjan Raghuraman and Rouzbeh Shahsavari of C-Crete Technologies. The National Science Foundation, the Air Force Office of Scientific Research and the Department of Energy supported the research.

"Recyclers do not turn large profits due to cheap oil prices, so only about 15% of all plastic gets recycled," said Rice graduate student Kevin Wyss, lead author of the study. "I wanted to combat both of these problems."

A new AI-optimized COVID screening device, a free response resource, and more — here's your latest roundup of research news. Image via Getty Images

These are the latest COVID-19-focused research projects happening at Houston institutions

research roundup

Researchers across the Houston area are working on COVID-19 innovations every day, and scientists are constantly finding new ways this disease is affecting humankind.

From a COVID breathalyzer to a new collaboration in Houston — here's your latest roundup of local coronavirus research news.

A&M System to collaborate on a COVID-19 breathalyzer

A prototype of the device will be used on the Texas A&M campus. Photo via tamu.edu

Researchers at Texas A&M University System are collaborating on a new device that uses artificial intelligence in a breathalyzer situation to detect whether individuals should be tested for COVID-19. The technology is being developed through a collaboration with Dallas-based company, Worlds Inc., and the U.S. Air Force.

The device is called Worlds Protect and a patient can use a disposable straw to blow into a copper inlet. In less than a minute, test results can be sent to the person's smartphone. Worlds Inc. co-founders Dave Copps and Chris Rohde envision Worlds Protect kiosks outside of highly populated areas to act as a screening process, according to a news release.

"People can walk up and, literally, just breathe into the device," says Rohde, president of Worlds Inc., in the release. "It's completely noninvasive. There's no amount of touching. And you quickly get a result. You get a yay or nay."

The university system has contributed $1 million in the project's development and is assisting Worlds Inc. with engineering and design, prototype building and the mapping of a commercial manufacturing process. According to the release, the plan was to test the prototypes will be tried out this fall on the Texas A&M campus.

"Getting tech innovations to market is one of our sweet spots," says John Sharp, chancellor of the Texas A&M System, in the release. "This breakthrough could have lasting impact on global public health."

Baylor College of Medicine researchers to determine cyclosporine’s role in treating hospitalized COVID-19 patients

BCM researchers are looking into the treatment effect of an existing drug on COVID-19 patients. Photo via BCM.edu

The Baylor College of Medicine has launched a randomized clinical trial to look into how the drug cyclosporine effects the prevention of disease progression in pre-ICU hospitalized COVID-19 patients. The drug has been used for about 40 years to prevent rejection of organ transplants and to treat patients with rheumatoid arthritis and psoriasis.

"The rationale is strong because the drug has a good safety profile, is expected to target the body's hyperimmune response to COVID and has been shown to directly inhibit human coronaviruses in the lab," says Dr. Bryan Burt, chief of thoracic surgery in the Michael E. DeBakey Department of Surgery at Baylor, says in a press release.

Burt initiated this trial and BCM is the primary site for the study, with some collaboration with Brigham and Women's. The hypothesis is that the drug will help prevent the cytokine storm that patients with COVID-19 experience that causes their health to decline rapidly, according to the release.

The study, which is funded by Novartis, plans to enroll 75 hospitalized COVID-19 patients at Baylor St. Luke's Medical Center who are not in the ICU. There will be an initial evaluation at six months but Burt expects to have the final study results in one year.

Rice launches expert group to help guide pandemic response

A new response team is emerging out of a collaboration led by Rice University. Photo courtesy of Rice

Rice University is collaborating with other Houston institutions to create the Biomedical Expert Panel, supported by Texas Policy Lab, to assist officials in long-term pandemic recovery.

"Not all agencies and decision-makers have an in-house epidemiologist or easy access to leaders in infectious disease, immunology and health communications," says Stephen Spann, chair of the panel and founding dean of the University of Houston College of Medicine, in a news release. "This panel is about equity. We must break out of our knowledge siloes and face this challenge together, with a commitment to inclusivity and openness."

The purpose of the panel is to be available as a free resource to health departments, social service agencies, school districts and other policymakers. The experts will help design efficient public health surveillance plans, advise on increasing testing capacity and access for underserved communities, and more.

"The precise trajectory of the local epidemic is difficult to predict, but we know that COVID-19 will continue to be a long-term challenge," says E. Susan Amirian, an epidemiologist who leads the TPL's health program, in the release. "Although CDC guidelines offer a good foundation, there is no one-size-fits-all approach when managing a crisis of this magnitude across diverse communities with urgent needs."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

10 promising Houston startups that made headlines in 2025

year in review

Editor's note: As we reflect on 2025, we're looking back at the stories and startups that made waves in Houston's innovation scene. These 10 startups reached memorable milestones, won prestigious awards, found creative solutions, and disrupted their industries.

Persona AI: Houston humanoid robotics startup inks new deal to deploy its rugged robots

A concept design rendering of Persona AI's humanoid robot. The company is expanding at the Ion and plans to deliver prototype humanoids by the end of 2026 for complex shipyard welding tasks. Rendering courtesy Persona AI.

Persona AI is building modularized humanoid robots that aim to deliver continuous, round-the-clock productivity and skilled labor for "dull, dirty, dangerous, and declining" jobs. The company was founded by Houston entrepreneur Nicolaus Radford, who serves as CEO, along with CTO Jerry Pratt and COO Jide Akinyode. It raised $42 million in pre-seed funding this year and is developing its prototype of a robot-welder for Hyundai's shipbuilding division, which it plans to unveil in 2026. The company won in the Deep Tech Business category at this year's Houston Innovation Awards. Continue reading.

Rheom Materials: Houston startup unveils its innovative leather alternative at the rodeo

Rheom Materials presented its bio-based alternative, Shorai, a 93 percent bio-based leather, at the rodeo and plans to scale it up this year. Photos courtesy Rheom Materials

Rheom Materials presented its scalable, bio-based alternative known as Shorai, a 93 percent bio-based leather, through two custom, western-inspired outfits that showed off cowboy flair through a sustainable lens at the Houston Livestock Show and Rodeo earlier this year.

Next up, the company said it aimed to scale production of Shorai, the Japanese word for “future,” at a competitive price point, while also reducing its carbon footprint by 80 percent when compared to synthetic leather. The company also made a large-scale production partnership with a thermoplastic extrusion and lamination company, Bixby International, this year. Continue reading.

Koda Health: Houston digital health platform Koda closes $7 million funding round

Tatiana Fofanova and Dr. Desh Mohan, founders of Koda Health, which recently closed a $7 million series A. Photo courtesy Koda Health.

Houston-based digital advance care planning company Koda Health closed an oversubscribed $7 million series A funding round this year. The round, led by Evidenced, with participation from Mudita Venture Partners, Techstars and Texas Medical Center, will allow the company to scale operations and expand engineering, clinical strategy and customer success. Koda Health, saw major growth this year by integrating its end-of-life care planning platform with Dallas-based Guidehealth in April and with Epic Systems in July. The company won the Health Tech Business category at the 2025 Houston Innovation Awards. Continue reading.

Veloci Running: Student-led startup runs away with prestigious prize at Rice competition

The H. Albert Napier Rice Launch Challenge awarded $100,000 in equity-free funding to student-led startups, including first-place finisher Veloci Running. Photo courtesy of Rice University.

Veloci Running took home the first-place prize and $50,000 at the annual Liu Idea Lab for Innovation and Entrepreneurship's H. Albert Napier Rice Launch Challenge. The company was founded by Tyler Strothman, a former track and field athlete and senior at Rice, majoring in sport management. Inspired by the foot pain he suffered due to the narrow toe boxes in his running shoes, Strothman decided to create a naturally shaped shoe designed to relieve lower leg tightness and absorb impact. Additional prize winners included SteerBio, Kinnections, Labshare and several others. Continue reading.

Square Robot Inc.: Houston robotics co. unveils new robot that can handle extreme temperatures

The new robot eliminates the need for humans to enter dangerous and toxic environments. Photo courtesy of Square Robot

Houston- and Boston-based Square Robot Inc.'s newest tank inspection robot became commercially available and certified to operate at extreme temperatures this fall. The new robot, known as the SR-3HT, can operate from 14°F to 131°F, representing a broader temperature range than previous models in the company's portfolio. According to the company, its previous temperature range reached 32°F to 104°F. The company also announced a partnership with downstream and midstream energy giant Marathon Petroleum Corp. (NYSE: MPC) last month. Continue reading.

Bot Auto: Houston autonomous trucking co. completes first test run without human intervention

Bot Auto completed its first test run without human assistance in Houston. Photo courtesy Bot Auto.

Houston-based Bot Auto, an autonomous trucking company, completed its first test run without human assistance earlier this year. Bot Auto conducted the test in Houston. The transportation-as-a-service startup added that this milestone “serves as a validation benchmark, demonstrating the maturity and safety of Bot Auto’s autonomy stack and test protocols.” This summer, founder Xiaodi Hou told the Front Lines podcast that Bot Auto had raised more than $45 million. Continue reading.

Nomad: Screen-free hiking app developed in Houston earns 'Best of the Best' award

NOMAD aims to help hikers stay in the moment while still utilizing technology. Photo courtesy UH.

An AI-powered, screen-free hiking system developed by Varshini Chouthri, a recent industrial design graduate from the University of Houston, received this year's Red Dot’s “Best of the Best” award, which recognizes the top innovative designs around the world. Known as NOMAD, the system aims to help users stay in the moment while still utilizing technology. Continue reading.

Little Place Labs, Helix Earth, Tempest Droneworx: Houston startups win big at SXSW 2025 pitch competition

Two Houston startups won the SXSW Pitch showcase in their respective categories. Photo via Getty Images

Houston had a strong showing at the SXSW Pitch showcase in Austin this year, with several local startups claiming top prizes in their respective categories.

Little Place Labs, a Houston space data startup, won the Security, GovTech & Space competition. Clean-tech company Helix Earth, which spun out of Rice University and was incubated at Greentown Labs, won in the Smart Cities, Transportation & Sustainability contest. Tempest Droneworx, a Houston-based company that provides real-time intelligence collected through drones, robots and sensors, won the Best Speed Pitch award. Continue reading.

6 Houstonians named to prestigious national group of inventors

top honor

Six Houston scientists and innovation leaders have been named to the National Academy of Inventors’ newest class of fellows. The award is the highest professional distinction awarded to academic inventors by the NAI.

The 2025 class is made up of 169 fellows who hold more than 5,300 U.S. patents, according to the organization. The group hails from 127 institutions across 40 U.S. states.

The Houston-based inventors are leading fields from AI to chemistry to cancer research.

“NAI Fellows are a driving force within the innovation ecosystem, and their contributions across scientific disciplines are shaping the future of our world,” Paul R. Sanberg, president of the National Academy of Inventors, said in a news release. “We are thrilled to welcome this year’s class of Fellows to the Academy. They are truly an impressive cohort, and we look forward to honoring them at our 15th Annual Conference in Los Angeles next year.”

The 2025 list of Houston-based fellows includes:

  • Vineet Gupta, Vice President for Innovation, Technology Development and Transfer at the University of Texas Medical Branch
  • Eva Harth, chemistry professor at the University of Houston
  • Dr. Raghu Kalluri, Professor and Chairman of the Department of Cancer Biology at The University of Texas MD Anderson Cancer Center
  • Sanjoy Paul, Executive Director of Rice Nexus and AI Houston and Associate Vice President for Technology Development at Rice University
  • Dr. Jochen Reiser, President of the University of Texas Medical Branch and CEO of UTMB Health System
  • Todd Rosengart, Professor and Chair of the Department of Surgery at Baylor College of Medicine

"It is a great honor to be named a Fellow of the NAI. It is deeply gratifying to know that the work my students and I do — the daily push, often in small steps — is seen and recognized," Harth added in a news release from UH.

The 2025 fellows will be honored and presented with their medals by a senior official of the United States Patent and Trademark Office at the NAI Annual Conference this summer in Los Angeles.