Free mental health care, local COVID-19 testing, and a new great to fund an ongoing study — here's your latest roundup of research news. Image via Getty Images

As Houston heads toward the end of summer with no major vaccine or treatment confirmed for COVID-19, local research institutions are still hard at work on various coronavirus-focused innovations.

Free mental health care, local COVID-19 testing, and a new great to fund an ongoing study — here's your latest roundup of research news.

Baylor College of Medicine genomics team to partner for local COVID-19 testing

Houston millionaire to start biotech accelerator for companies focusing on regenerative medicine

Two departments at BCM are working with the county on COVID-19 testing. Getty Images

Two Baylor College of Medicine institutions have teamed up to aid in local COVID-19 testing. The Human Genome Sequencing Center and the Alkek Center for Metagenomics and Microbiome Research — under the leadership of BCM — are partnering with local public health departments to provide polymerase chain reaction testing of COVID-19 samples, according to a news release from BCM.

"We are pleased to work with the outstanding local government groups in this critical public health effort," says Dr. Richard Gibbs, director of the HGSC and Wofford Cain chair and professor of molecular and human genetics at Baylor, in the release. "We are proud of the tireless determination and expertise of our centers and college staff that enabled the rapid development of this robust testing capacity to serve the greater Houston community."

Baylor is among the testing providers for Harris County Public Health, and people can receive testing following a pre-screening questionnaire online.

"We are fortunate to have Baylor College of Medicine as a close partner during the COVID-19 pandemic," says Dr. Umair Shah, executive director of Harris County Public Health, in the release. "This is a challenging time for our community and as the need for increased testing capacity and getting results to residents faster has grown, Baylor has risen to the occasion. There are countless unsung heroes across Harris County who have stepped up to the plate during this pandemic and Baylor College of Medicine is one of them."

COVID-19 testing samples are collected from testing sites and delivered to the Alkek Center. After isolating the virus, genomic material is extracted and sent to the HGSC to quantitative reverse transcription PCR testing. Should the sample's RNA sequence match the virus, then it is positive for COVID-19. The sequencing must test positive three times to be considered overall positive.

Results are returned within 48 hours, and the lab has a capacity of more than 1,000 samples a day. Since May, the team has tested over 30,000 samples.

"We knew we had all the pieces to stand up a testing center fast – large scale clinical sequencing, experts in virology and molecular biology, and a secure way to return results to patients," says Ginger Metcalf, Human Genome Sequencing Center Director of Project Development, in the release. "We are also fortunate to have such great partners at Harris County Public Health, who have done an amazing job of gathering, tracking and delivering samples, especially for the most at-risk members of our community."

National Science Foundation renews Rice University funding amid pandemic

José Onuchic (left) and Peter Wolynes are co-directors of the Center for Theoretical Biological Physics at Rice University. Photo by Jeff Fitlow/Rice University

Rice University's Center for Theoretical Biological Physics has been granted a five-year extension from the National Science Foundation. The grant for $12.9 million will aid in continuing the CTBP's work at the intersection of biology and physics.

The center — which was founded in 2001 at the University of California, San Diego, before moving to Rice in 2011 — is led by Peter Wolynes and José Onuchic.

"We have four major areas at the center," Onuchic says in a news release. "The first is in chromatin theory and modeling, developing the underlying mathematical theory to explain the nucleus of the cell — what Peter calls the 'new nuclear physics.' The second is to test ideas based on the data being created by experimentalists. The third is to understand information processing by gene networks in general, with some applications related to metabolism in cancer. The fourth is to study the cytoskeleton and molecular motors. And the synergy between all of these areas is very important."

Onuchic adds that an upcoming donation of a supercomputer by AMD will help the center's ongoing research into COVID-19 and four institutions — Rice, Northeastern, Baylor College of Medicine and the University of Houston — are working collaboratively on the study,

"We're all set to move on doing major COVID-related molecular simulations on day one," he says in the release. "The full functioning of a center requires a synergy of participation. Rice is the main player with people from multiple departments, but Baylor, Northeastern and Houston play critical roles."

University of Houston offers free mental health therapy for restaurant workers

Texas restaurant workers can get free mental health care from a UH initiative. Photo via Elle Hughes/Pexels

Through a collaboration with Southern Smoke and Mental Health America of Greater Houston, the University of Houston Clinical Psychology program launched a a free mental health care program for Texas-based food and beverage employees and their children.

"During normal times this is a high stress industry where people work very hard in environments where they are just blowing and going all the time," says John P. Vincent, professor of psychology and director of the UH Center for Forensic Psychology, in a news release.

The program has 14 graduate students who converse with a total of 30 patients and meet weekly with supervisors at UH.

"This opportunity allows our clinical program to reach people in the community who usually don't have access to mental health services," says Carla Sharp, professor of psychology and director of clinical training, in the release.

For restaurant industry workers looking for help and care, they can visit the Mental Health Services page on Southern Smoke's website.

According to Vincent, this is just the beginning.

"We're discussing it," says Vincent in the release. "But as far as I'm concerned it can just keep going and going."

Three health and tech research projects coming out of the Houston area have received grants to continue their work. Getty Images

These 3 Houston-area researchers receive millions in grants for ongoing innovation projects

Research roundup

Money makes the world go 'round, and that's certainly the case with research projects. Grants are what drives research at academic institutions across the country and fuel the next great innovations.

These three projects coming out of Houston-area universities were all granted multimillion-dollar sums in order to continue their health tech, cancer-prevention, and even electric vehicle battery research projects,

University of Houston's $3.2 million grant for its next-generation micro CT scan

Associate professor of physics Mini Das developed a better way to approach CT scans. Photo via uh.edu

In an effort to improve imaging and lower radiation, Mini Das, associate professor of physics at the University of Houston, is moving the needle on introducing the next generation of micro computed tomography (CT) imaging. Das recently received a five-year, $3.2 million grant from the National Institute of Biomedical Imaging and Bioengineering to help move along her work in this field.

"This has the potential to transform the landscape of micro-CT imaging," says Das in a news release.

Das is responsible for developing the theory, instrumentation and algorithms for spectral phase-contrast imaging (PCI) that allows for lower radiation with higher image details, according to the release.

"Current X-ray and CT systems have inherent contrast limitations and dense tissue and cancer can often look similar. Even if you increase the radiation dose, there is a limit to what you can see. In addition, image noise becomes significant when increasing resolution to see fine details, often desirable when scanning small objects," says Das.

Rice University researcher's $2.4 million grant to advance on car batteries

This company’s machine learning programs are making driving in Houston safer — and cheaper

A Rice University scientist is looking to optimize car batteries. Pexels

A Rice University scientist is working toward improving batteries for electric vehicles. Materials scientist Ming Tang and his colleagues — backed by a $2.4 million grant from the United States Advanced Battery Consortium — are working on a project led by Worcester Polytechnic Institute (WPI) in Massachusetts, which will run for 36 months and will focus on low-cost and fast-charging batteries.

"Traditional battery electrodes are prepared by the slurry casting method and usually have uniform porosity throughout the electrode thickness," says Tang, an assistant professor of materials science and nanoengineering, in a news release. "However, our earlier modeling study shows that an electrode could have better rate performance by having two or more layers with different porosities.

"Now with the Missouri University of Science and Technology and WPI developing a new dry printing method for battery electrode fabrication, such layered electrodes can be manufactured relatively easily," he said. Tang's group will use modeling to optimize the structural parameters of multilayer electrodes to guide their fabrication.

The academics will also work with a manufacturer, Microvast, that will assemble large-format pouch cells using layered electrodes and evaluate the electrochemical performance against the program goals, according to the release.

"The public/private partnership is critical to steer the research performed at universities," Tang says. "It helps us understand what matters most to commercial applications and what gaps remain between what we have and what is needed by the market. It also provides valuable feedback and gives the project access to the state-of-the-art commercial battery fabrication and testing capabilities."


Texas A&M faculty member's $5 million grant for cancer research

Tanmay Lele of Texas A&M University is looking at how cells react to mechanical forces in cancer. Photo via tamu.edu

Tanmay Lele, a new faculty member in Texas A&M University's Department of Biomedical Engineering, received a $5 million Recruitment of Established Investigators grant from the Cancer Prevention and Research Institute of Texas (CPRIT) in May to research how cancer progresses.

More specifically, Lele's research focuses on mechanobiology and how cells sense external mechanical forces as well as how they generate mechanical forces, and how these mechanical forces impact cell function, according to a news release from A&M.

"The nuclei in normal tissue have smooth surfaces, but over time the surfaces of cancer nuclei become irregular in shape," Lele says in the release. "Now, why? Nobody really knows. We're still at the tip of the iceberg at trying to figure this problem out. But nuclear abnormalities are ubiquitous and occur in all kinds of cancers — breast, prostate and lung cancers."

Lele will work from two laboratories — one in College Station and one in the Texas A&M Health Science Center's Institute of Biosciences & Technology in Houston. THe will collaborate with Dr. Michael Mancini and Dr. Fabio Stossi from Baylor College of Medicine.

"Like any other basic field, we are trying to make discoveries with the hope that they will have long-term impacts on human health," Lele says.

The University of Houston, a Tier One research institution, has a few ongoing projects focusing on treating or preventing COVID-19. Photo courtesy of University of Houston

University of Houston researchers studying COVID-19 prevention and treatment

research roundup

Researchers across the country are focusing on all things COVID-19 — from biotherapies and treatment to vaccines and prevention. A handful of researchers based out of the University of Houston are doing their best to move the needle on a cure or reliable vaccine.

Here are three research projects currently ongoing at UH.

UH pharmacy professors take it back to basics

UH College of Pharmacy professors Gomika Udugamasooriya (left) and Bin Guo are studying how the virus enters the human body. Photo via uh.edu

When thinking about how to prevent the spread of COVID-19, two UH pharmacy professors are looking at how the virus enters the body. Then, this information can help develop protection of that entry point.

"The human entry of coronaviruses depends on first binding of the viral spike proteins to human cellular receptors that basically offer a cellular doorknob," says Gomika Udugamasooriya, associate professor of pharmacological and pharmaceutical sciences, in a press release. "The virus latches onto the specific human cellular receptor, ACE2, and sneaks inside to replicate itself within the cell to spread throughout the body."

Now, the goal of new drugs and vaccines is to protect that ACE2. Udugamasooriya is working with Bin Guo, associate professor of pharmaceutics, on this research, which is in the initial screening levels and identified drug-lead validations. They are working to apply their unique cell-screening technology to identify specific synthetic chemical drug leads called peptoids that can bind to ACE2 receptor, according to the release.

"Peptoids are easier to make, compatible with biological systems and economical to produce," says Udugamasooriya.

Duo aims to create inhalation vaccine for COVID-19

Navin Varadarajan, UH engineering professor (left), and pharmaceutics professor Xinli Liu, pharmaceutics professor, are collaborating on development and testing of a COVID-19 inhalation vaccine. Photo via uh.edu

If the disease itself is airborne, can't the vaccine be too? That's what M.D. Anderson Associate Professor of Chemical and Biomolecular Engineering Navin Varadarajan looking into.

"For airborne pathogens, the nasal mucosa is the first point of defense that needs to be breached," says Varadarajan in a news release. "Mucosal immunity and vaccines are fundamentally important for a wide range of pathogens including influenza, severe acute respiratory syndrome coronavirus (SARS-CoV) and the current SARS-CoV-2."

Varadarajan is focusing on the spike protein to protect at virus entry. These proteins are known for building strong immune responses, flexibility and scalability, and absence of infectious particles. He is working with Xinli Liu, associate professor of pharmaceutics.

"As with any vaccine, a variety of factors determine their efficacy including the antigen used for electing a response, the adjuvants and immunomodulators, the efficient delivery of the antigen to appropriate target cells, and the route of vaccination," Varadarajan says.

The man with three different vaccine options

UH Professor Shaun Zhang is in the process of developing three COVID-19 vaccine candidates for injection. Photo via uh.edu

Shaun Zhang, director for the Center for Nuclear Receptors and Cell Signaling, usually works on developing treatment or vaccines for cancer and viral infection. Now, he's switched gears to work on three different vaccine candidates for COVID-19.

"The data collected from our studies show that our vaccine candidates can generate neutralizing antibodies, which can protect cells from infection by SARS-CoV-2 when tested in vitro," says Zhang in a press release. "We are now working on further improvement for the vaccine design."

Zhang's approach is neutralizing antibody production, and he's tapped into using "subunit vaccine containing either the entire spike protein or the receptor binding portion, which helps the virus enter the target cell, and delivered either by DNA formulation or by a herpes simplex virus-based vector," according to the release. Low cost and simplicity are two priorities for Zhang's work.

From CBD treatment for man's best friend to smart tech for senior living, here are three research projects coming out of the Bayou City. Getty Images

Here are 3 research projects to watch in Houston

Research roundup

Research, perhaps now more than ever, is crucial to expanding and growing innovation in Houston.

In InnovationMap's latest roundup of research projects, we look into studies on traffic-reducing technology, recently funded projects on senior living devices, and the effect of CBD oil on four-legged arthritis patients.

University of Houston researchers look into tech to solve traffic jams

Photo via uh.edu

Traffic in major cities including Houston has been a growing problem — especially as populations grow. But, when considering ways to alleviate the issue, University of Houston researchers found that technology — 511 traffic information systems and roadside cameras to traffic apps like Waze and Google Maps – is already helping the situation.

"Technology has the potential to help society, and one way is to help us make better infrastructure decisions and put less pressure on roads," says Paul A. Pavlou, dean of the C.T. Bauer College of Business and author for the report, in a UH news release.

Pavlou, whose report was published by Information Systems Research, and colleagues Aaron Cheng of the London School of Economics and Min-Seok Pang of Temple University discovered that Intelligent Transportation Systems, or ITS, saved cities using the technology more than $4.7 billion a year in lost work or productivity, 175 million hours a year in travel time, 53 million gallons a year in fossil fuel consumption, and 10 billion pounds less CO2 emitted each year, according to the release.

Houston, for instance, has yet to adopt a 511 traveler information system, but has worked with private companies to design and build intelligent transportation systems.

"Traffic is even worse than before since people move where the roads are built and drive more," Pavlou says. "The city is growing, but there are alternative ways that do not impose some much demand on roads with the intelligent use of technology in parallel."

Baylor College of Medicine's CBD research on canine arthritis

Photo via bcm.edu

Just like mankind, man's best friend is subject to arthritis. A study from Baylor College of Medicine in collaboration with Medterra CBD is looking into how cannabidiol, or CBD, can improve conditions in arthritis patients of both species.

The study was published in the journal PAIN and found that CBD treatment improved the quality of life for the dogs with artritis.

"CBD is rapidly increasing in popularity due to its anecdotal health benefits for a variety of conditions, from reducing anxiety to helping with movement disorders," says corresponding author Dr. Matthew Halpert, research faculty in the Department of Pathology and Immunology at Baylor, in a news release. "In 2019, Medterra CBD approached Baylor to conduct independent scientific studies to determine the biological capabilities of several of its products."

Arthritis is a common condition in dogs, with the American Kennel Club finding that it affects around 20 percent of dogs in the United States. Plus, according to the release, the dogs' conditions are similar to humans.

"We studied dogs because experimental evidence shows that spontaneous models of arthritis, particularly in domesticated canine models, are more appropriate for assessing human arthritis pain treatments than other animal models. The biological characteristics of arthritis in dogs closely resemble those of the human condition," Halpert says.

According to Halpert, the study found good results. Nine of the 10 dogs on CBD showed benefits, he says.

Rice University's senior living tech receives grants

Photo via rice.edu

Rice University researchers who are looking into technology that can advance senior living facilities have received three new grants to continue their study.

According to a press release from Rice, the Internet of Things and Aging-in-Place Seed Grants, which is funded by Rice ENRICH and UTHealth, support research teams that "work together to test ideas, gather critical information and lay the groundwork for larger grant applications in the future."

"The Rice ENRICH office serves to facilitate collaborations of Rice faculty with those at TMC (Texas Medical Center) institutions," says Marcia O'Malley, a professor of mechanical engineering at Rice and an adviser to the provost for Rice ENRICH, in the release. "Our recent engagement with UTHealth and the seed funds awarded demonstrates Rice's commitment to building lasting relationships in the TMC community."

The grants were awarded to three projects:

  1. "Aging in Place with Cognitive Impairment: Toward User-Centered Assistive Technologies. " This study will look into availability and usefulness of assistive technologies among white, Hispanic, and African American patients with mild cognitive impairment to moderate dementia.
  2. "Facial and Body Motion Technology to Detect Psychosocial Distress in Stroke Survivors and Informal Caregivers Living at Home." This study will look at stroke survivors and their informal caregivers to help test technologies in a simulated home environment and look for signs of psychosocial distress, which can contribute to poor health outcomes.
  3. "An AI-powered chatbot for supporting the medication information needs of older adults." —This study will develop a voice-activated system that could be integrated into smart assistants to answer medication-related questions.

Houston-area researchers are innovating health and wellness solutions every day — even focusing on non-pandemic-related issues. Getty Images

These 3 Houston research projects are revolutionizing health science

Research roundup

Researchers across the world are coming up with innovative breakthroughs regarding the coronavirus, but Houston research institutions are also making health and wellness discoveries outside of COVID-19.

Here are three from Houston researchers from a muscular atrophy study from outer space to a research project that might allow blind patients to "see."

Houston Methodist's research on muscular atrophy in astronauts

Scientists are studying the effect of certain drugs to help preserve muscles in astronauts. Photo courtesy of Houston Methodist/Facebook

Houston Methodist researcher Alessandro Grattoni and his team published research on muscular atrophy in astronauts. The research was published in Advanced Therapeutics and focused on his 2017 RR-6 muscle atrophy study that was conducted on the International Space Station.

While the current standard practice for astronauts maintaining their muscles is working out over two hours a day, the research found that use of drugs could also help preserve muscles. On a SpaceX refuel mission, mice that were implanted with a "Nanofluidic Delivery System" were sent up to space and monitored, according to a report. The device gradually released small doses of formoterol, an FDA approved drug for use in bronchodilation that has also been shown to stimulate increased muscle mass.

University of Houston researcher tracking fear response to improve mental health treatment

The research could help advance wearable devices. Photo via uh.edu

University of Houston researchers are looking into the way the body responds to fear in order to enhance mental health treatment. Rose Faghih, assistant professor of electrical and computer engineering, and doctoral student Dilranjan Wickramasuriya in the Computational Medicine Lab (CML) are leading the project.

"We developed a mixed filter algorithm to continuously track a person's level of sympathetic nervous system activation using skin conductance and heart rate measurements," writes Faghih in the journal PLOS One. "This level of sympathetic activation is closely tied to what is known as emotional arousal or sympathetic arousal."

When this sympathetic nervous system is activated — sometimes known as the "fight or flight" response — the heart beats faster and more oxygen is delivered to the muscles, according to a press release. Then, the body begins to sweat in order to cool down.

"Using measurements of the variations in the conductivity of the skin and the rate at which the heart beats, and by developing mathematical models that govern these relationships, CML researchers have illustrated that the sympathetic nervous system's activation level can be tracked continuously," reports Faghih.

This algorithm could be used in a wearable electronic device that could be worn by a patient diagnosed with a fear or anxiety disorder.

Baylor College of Medicine's vision-restoring research

What if a device could see for you? Photo from Pexels

When someone loses their vision, it's likely due to damage to the eyes or optic nerve. However, the brain that interprets what they eyes sees, works perfectly fine. But researchers from Baylor College of Medicine have worked on a thesis that a device with a camera could be designed and implemented to do the seeing for the blind patient.

"When we used electrical stimulation to dynamically trace letters directly on patients' brains, they were able to 'see' the intended letter shapes and could correctly identify different letters," says Dr. Daniel Yoshor, professor and chair of neurosurgery in a press release. "They described seeing glowing spots or lines forming the letters, like skywriting."

Through a study supported by the National Eye Institute with both sighted and blind people using implanted devices, the investigators determined that the process was promising. According to the release, the researchers identified several obstacles must be overcome before this technology could be implemented in clinical practice.

"The primary visual cortex, where the electrodes were implanted, contains half a billion neurons. In this study we stimulated only a small fraction of these neurons with a handful of electrodes," says said Dr. Michael Beauchamp, professor and in neurosurgery, in the release.

"An important next step will be to work with neuroengineers to develop electrode arrays with thousands of electrodes, allowing us to stimulate more precisely. Together with new hardware, improved stimulation algorithms will help realize the dream of delivering useful visual information to blind people."

Houston researchers are working to provide COVID-19 solutions amid the pandemic. Getty Images

These 5 Houston-area research institutions have bright minds at work to battle COVID-19

research roundup

Since even the early days of COVID-19's existence, researchers all over the world were rallying to find a cure or potential vaccine — which usually take years to make, test, and get approved.

Houston researchers were among this group to put their thinking caps on to come up with solutions to the many problems of the coronavirus. From the testing of existing drugs to tapping into tech to map the disease, here are some research projects that are happening in Houston and are emerging to fight the pandemic.

Baylor College of Medicine evaluating potential COVID-fighting drug

Human Body Organs (Lungs Anatomy)

Baylor College of Medicine has identified a drug that could potentially help heal COVID-19 patients. Photo via bcm.edu

While Baylor College of Medicine has professionals attacking COVID-19 from all angles, one recent discovery at BCM includes a new drug for treating COVID-caused pneumonia.

BCM researchers are looking into Tocilizumab's (TCZ), an immunomodulator drug, effect on patients at Baylor St. Luke's Medical Center and Harris Health System's Ben Taub Hospital.

"The organ most commonly affected by COVID-19 is the lung, causing pneumonia for some patients and leading to difficulty breathing," says Dr. Ivan O. Rosas, chief of the pulmonary, critical care and sleep medicine section at BCM, in a news release.

TCZ, which has been used to successfully treat hyperimmune responses in cancer patients being treated with immunotherapy, targets the immune response to the coronavirus. It isn't expected to get rid of the virus, but hopefully will reduce the "cytokine storm," which is described as "the hyper-immune response triggered by the viral pneumonia" in the release.

The randomized clinical trial is looking to treat 330 participants and estimates completion of enrollment early next month and is sponsored by Genentech, a biotechnology company.

Texas A&M University leads drug testing

A Texas A&M University researcher is trying to figure out if an existing vaccine has an effect on COVID-19. Screenshot via youtube.com

A researcher from Texas A&M University is working with his colleagues on a short-term response to COVID-19. A vaccine, called BDG, has already been deemed safe and used for treatment for bladder cancer. BDG can work to strengthen the immune system.

"It's not going to prevent people from getting infected," says Dr. Jeffrey D. Cirillo, a Regent's Professor of Microbial Pathogenesis and Immunology at the Texas A&M Health Science Center, in a news release. "This vaccine has the very broad ability to strengthen your immune response. We call it 'trained immunity.'"

A&M leads the study in partnership with the University of Texas MD Anderson Cancer Center and Baylor College of Medicine in Houston, as well as Harvard University's School of Public Health and Cedars Sinai Medical Center in Los Angeles.

Texas A&M Chancellor John Sharp last week set aside $2.5 million from the Chancellor's Research Initiative for the study. This has freed up Cirillo's team's time that was previously being used to apply for grants.

"If there was ever a time to invest in medical research, it is now," Sharp says in the release. "Dr. Cirillo has a head start on a possible coronavirus treatment, and I want to make sure he has what he needs to protect the world from more of the horrible effects of this pandemic."

Currently, the research team is recruiting 1,800 volunteers for the trial that is already underway in College Station and Houston — with the potential for expansion in Los Angeles and Boston. Medical professionals interested in the trial can contact Gabriel Neal, MD at gneal@tamu.edu or Jeffrey Cirillo, PhD at jdcirillo@tamu.edu or George Udeani, PharmD DSc at udeani@tamu.edu.

"This could make a huge difference in the next two to three years while the development of a specific vaccine is developed for COVID-19," Cirillo says in the release.

Rice University is creating a COVID-19 map

Researchers at Rice University's Center for Research Computing's Spatial Studies Lab have mapped out all cases of COVID-19 across Texas by tapping into public health data. The map, which is accessible at coronavirusintexas.org, also identifies the number of people tested across the state, hospital bed utilization rate, and more.

The project is led by Farès el-Dahdah, director of Rice's Humanities Research Center. El-Dahdah used open source code made available by ESRI and data from the Texas Department of State Health Services and Definitive Healthcare.

"Now that the Texas Division of Emergency Management released its own GIS hub, our dashboard will move away from duplicating information in order to correlate other numbers such as those of available beds and the potential for increasing the number of beds in relation to the location of available COVID providers," el-Dahdah says in a press release.

"We're now adding another layer, which is the number of available nurses," el-Dahdah continues. "Because if this explodes, as a doctor friend recently told me, we could be running out of nurses before running out of beds."


Texas Heart Institute is making vaccines more effective

A new compound being developed at Texas Heart Institute could revolutionize the effect of vaccines. Photo via texasheart.org

Molecular technology coming out of the Texas Heart Institute and 7 HIlls Pharma could make vaccines — like a potential coronavirus vaccine — more effective. The oral integrin activator has been licensed to 7 Hills and is slated to a part of a Phase 1 healthy volunteer study to support solid tumor and infectious disease indications in the fall, according to a press release.

The program is led by Dr. Peter Vanderslice, director of biology at the Molecular Cardiology Research Laboratory at Texas Heart Institute. The compound was first envisioned to improve stem cell therapy for potential use as an immunotherapeutic for certain cancers.

"Our research and clinical colleagues are working diligently every day to advance promising discoveries for at risk patients," says Dr. Darren Woodside, co-inventor and vice president for research at the Texas Heart Institute, in the release. "This platform could be an important therapeutic agent for cardiac and cancer patients as well as older individuals at higher risk for infections."

University of Houston's nanotech health monitor

UH researchers have developed a pliable, thin material that can monitor changes in temperature. Photo via uh.edu

While developed prior to the pandemic, nanotechnology out of the University of Houston could be useful in monitoring COVID patients' temperatures. The material, as described in a paper published by ACS Applied Nano Materials, is made up of carbon nanotubes and can indicate slight body temperature changes. It's thin and pliable, making it ideal for a wearable health tech device.

"Your body can tell you something is wrong before it becomes obvious," says Seamus Curran, a physics professor at the University of Houston and co-author on the paper, in a news release.

Curran's nanotechnology research with fellow researchers Kang-Shyang Liao and Alexander J. Wang, which also has applications in making particle-blocking face masks, began almost 10 years ago.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

These are the 10 most promising energy tech startups, according to judges at Rice Alliance forum

best of the best

This week, energy startups pitched virtually for venture capitalists — as well as over 1,000 attendees — as a part of Rice Alliance for Technology and Entrepreneurship's 18th annual Energy and Clean Tech Venture Forum.

At the close of the three-day event, Rice Alliance announced its 10 most-promising energy tech companies. Here's which companies stood out from the rest.

W7energy

Based in Delaware, W7energy has created a zero-emission fuel cell electric vehicle technology supported by PiperION polymers. The startup's founders aim to provide a more reliable green energy that is 33 percent cheaper to make.

"With ion exchange polymer, we can achieve high ionic conductivity while maintaining mechanical strength," the company's website reads. "Because of the platform nature of the chemistry, the chemical and physical properties of the polymer membranes can be tuned to the desired application."

Modumetal

Modumetal, which has its HQ in Washington and an office locally as well, is a nanotechnology company focused on improving industrial materials. The company was founded in 2006 by Christina Lomasney and John Whitaker and developed a patented electrochemical process to produce nanolaminated metal alloys, according to Modumetal's website.

Tri-D Dynamics

San Francisco-based Tri-D Dynamics has developed a suite of smart metal products. The company's Bytepipe product claims to be the world's first smart casing that can collect key information — such as leak detection, temperatures, and diagnostic indicators — from underground and deliver it to workers.

SeekOps

A drone company based in Austin, SeekOps can quickly retrieve and deliver emissions data for its clients with its advance sensor technology. The company, founded in 2017, uses its drone and sensor pairing can help reduce emissions at a low cost.

Akselos

Switzerland-based Akselos has been using digital twin technology since its founding in 2012 to help energy companies analyze their optimization within their infrastructure.

Osperity

Osperity, based in Houston's Galleria area, is a software company that uses artificial intelligence to analyze and monitor industrial operations to translate the observations into strategic intelligence. The technology allows for cost-effective remote monitoring for its clients.

DroneDeploy

DroneDeploy — based in San Francisco and founded in 2013 — has raised over $92 million (according to Crunchbase) for its cloud-based drone mapping and analytics platform. According to the website, DroneDeploy has over 5,000 clients worldwide across oil and gas, construction, and other industries.

HEBI Robotics

Pittsburgh-based HEBI Robotics gives its clients the tools to build custom robotics. Founded 2014, HEBI has clients — such as NASA, Siemens, Ericsson — across industries.

CarbonFree Chemicals

CarbonFree Chemicals, based in San Antonio and founded in 2016, has created a technology to turn carbon emissions to useable solid carbonates.

SensorUp

Canadian Internet of Things company, SensorUp Inc. is a location intelligence platform founded in 2011. The technology specializes in real-time analysis of industrial operations.

"Whether you are working with legacy systems or new sensors, we provide an innovative platform that brings your IoT together for automated operations and processes," the company's website reads.

Amazon unlocks 2 prime brick-and-mortar stores in the Houston area

THAT'S SOME PRIME SHOPPING

The juggernaut that is Amazon considers to rule the universe and expand. Now, local fans of Jeff Bezos' digital behemoth can look forward to two new brick-and-mortar stores in the Houston area.

Amazon announced the opening of two Houston stores on September 18: Amazon 4-star in The Woodlands Mall and Amazon Books in Baybrook Mall.

For the uninitiated, the Amazon 4-star is a new store that carries highly rated products from the top categories across all of Amazon.com — including devices, consumer electronics, kitchen, home, toys, books, games, and more.

As the name implies, all products are rated four stars and above by Amazon customers. Other determinants include the item being a top seller, or if it is new and trending on Amazon.com, according to a press release.

Shoppers can expect fun features such as "Bring Your Own Pumpkin Spice," "Stay Connected Home Tech for Work and Play," "Fresh Off the Screen," and "Trending Around Houston" to discover must-have products. The Woodlands Amazon 4-star (1201 Lake Woodlands Dr.) is the 23rd Amazon 4-star location nationwide.

Meanwhile, shoppers in Baybrook Mall's Amazon Books (1132 Baybrook Mall Dr.) can expect myriad titles rated as customer favorites, whether trending on the site, devices, or listed as customer favorites. Amazon Books in the Baybrook Mall is the 23rd Amazon Books location nationwide.

Books customers can shop cookbooks alongside a highly curated selection of cooking tools, as well as, popular toys, games, and other home items. Amazon Books is open to all: Prime members pay the Amazon.com price in store, and customers who aren't already Prime members can sign up for a free 30-day trial and instantly receive the Amazon.com price in store, according a release.

---
This article originally ran on CultureMap.