Here's what researchers raked in the cash to support their research. Photo via Getty Images

Funding fuels the research that supports the innovations of tomorrow. Two Houston-based scientific organizations announced funding recipients that are working on advancing research in space health and chemistry.

4 research teams receive funds to advance space health work

The Translational Research Institute for Space Health, known as TRISH, at Baylor College of Medicine has announced almost $4 million in grants to four research teams. As more and more plans to launch humans into space continue to develop, TRISH is working to support research addressing human health in space.

TRISH's Biomedical Research Advances for Space Health initiative looked for new ways to reduce potential damage from the environment through manipulation of human metabolism and the normal state-of-being at the cellular or whole organism level, according to a press release.

"These outstanding awardees brought cutting-edge proposals to the table. Each project provides a unique opportunity to advance human health research on the bleeding edge of science fiction," says TRISH Executive Director, Dorit Donoviel, in the release. "This creative research has the potential to protect all humans through advancing tissue transplantation or helping patients that have medical conditions such as heart or brain damage that could be aided by reducing cellular activity."

The awardees, who will begin their TRISH-funded research in April 2022, for BRASH 2101 included:

  • Clifton Callaway, M.D., Ph.D., University of Pittsburgh, Pennsylvania
    • Cold-Sleep for Long Duration Spaceflight
  • Tammy Chang, M.D., Ph.D., University of California, San Francisco
    • The Effect of Isochoric Supercooling on Human Liver Metabolic Function
  • Allyson Hindle, Ph.D., University of Nevada, Las Vegas
    • Can Humans Hibernate at Warm Temperatures?
  • Christopher Porada, Ph.D., Wake Forest University, Winston-Salem, North Carolina
    • Using Human Organoids and Fossilized Remains from Extinct Hominins to Unlock the Secrets of Torpor/Hibernation

Houston organization names 2021 award recipient

The Welch Foundation has named professor Chi-Huey Wong as the 2021 recipient of the Robert A. Welch Award in Chemistry. Wong is a leader in synthetic chemistry and chemical biology. Specifically, the award recognizes Wong for his development of new methods for the synthesis of complex carbohydrates and glycoproteins and the elucidation of carbohydrate-mediated biological recognition associated with disease progression, according to a press release.

"The mission of The Welch Foundation is to improve the lives of others through the advancement of chemical research, and Dr. Wong has been working towards that goal for decades," says Carin Barth, chair and director of The Welch Foundation Board of Directors. "Not only has he made revolutionary advances in chemistry and biology, but his methodologies will facilitate new drug and vaccine developments for years to come."

Wong is the Scripps Family Chair Professor in the Department of Chemistry at The Scripps Research Institute. He will receive $500,000 to advance his research. Houston-based Welch Foundation has contributed more than $1.1 billion to the advancement of chemistry since 1954.

From advanced computation to robots, Rice University, the University of Houston, and Houston Methodist are all working on using technology for medical innovation. Graphic via Getty Images

Houston researchers tap into tech to provide new brain-related health care solutions

research roundup

Research, perhaps now more than ever, is crucial to expanding and growing innovation in Houston — and it's happening across the city right under our noses.

In InnovationMap's latest roundup of research news, three Houston institutions are working on brain-related health care solutions thanks to technologies.

University of Houston research team focused on brain injury treatment through computation

Badri Roysam and his team at the University of Houston are working with the National Institute of Health to develop tools to treat concussions and brain injuries. Photo via uh.edu

A University of Houston researcher is tapping into technology to better treat brain injuries and conditions that scientists have not yet figured out treatment for. Badri Roysam, the current chair of electrical and computer engineering at UH and a Hugh Roy and Lillie Cranz Cullen University Professor, and his team have created a new computational image analysis methods based on deep neural networks.

"We are interested in mapping and profiling unhealthy and drug-treated brain tissue in unprecedented detail to reveal multiple biological processes at once - in context," Roysam says in a UH press release about his latest paper published in Nature Communications. "This requires the ability to record high-resolution images of brain tissue covering a comprehensive panel of molecular biomarkers, over a large spatial extent, e.g., whole-brain slices, and automated ability to generate quantitative readouts of biomarker expression for all cells."

Roysam's system, which was developed at the the National Institute of Neurological Disorders and Stroke, analyzes the images on UH's supercomputer automatically and can reveal multiple processes at once – the brain injury, effects of the drug being tested and the potential side effects of the drug, per the release.

"Compared to existing screening techniques, using iterative immunostaining and computational analysis, our methods are more flexible, scalable and efficient, enabling multiplex imaging and computational analysis of up to 10 – 100 different biomarkers of interest at the same time using direct or indirect IHC immunostaining protocols," says Roysam in the release.

The open-source toolkit, which was developed thanks to a $3.19 million grant from the National Institute of Health, is also adaptable to other tissues.

"We are efficiently overcoming the fluorescence signal limitations and achieving highly enriched and high-quality source imagery for reliable automated scoring at scale," says Roysam. "Our goal is to accelerate system-level studies of normal and pathological brains, and pre-clinical drug studies by enabling targeted and off-target drug effects to be profiled simultaneously, in context, at the cellular scale."

Houston Methodist and Rice University launch new collaboration to use robotics for clinical solutions

Rice University's Behnaam Aazhang and Marcia O'Malley are two of the people at the helm of the new center along with Houston Methodist's Dr. Gavin Britz. Photos via Rice.edu

Rice University and Houston Methodist have teamed up to create a new partnership and to launch the Center for Translational Neural Prosthetics and Interfaces in order to bring together scientists, clinicians, engineers, and surgeons to solve clinical problems with neurorobotics.

"This will be an accelerator for discovery," says the new center's co-director, Dr. Gavin Britz, chair of the Houston Methodist Department of Neurosurgery, in a news release. "This center will be a human laboratory where all of us — neurosurgeons, neuroengineers, neurobiologists — can work together to solve biomedical problems in the brain and spinal cord. And it's a collaboration that can finally offer some hope and options for the millions of people worldwide who suffer from brain diseases and injuries."

The center will have representatives from both Rice and Houston Methodist and also plans to hire three additional engineers who will have joint appointments at Houston Methodist and Rice.

"The Rice Neuroengineering Initiative was formed with this type of partnership in mind," says center co-director Behnaam Aazhang, Rice's J.S. Abercrombie Professor of Electrical and Computer Engineering, who also directs the neuroengineering initiative. "Several core members, myself included, have existing collaborations with our colleagues at Houston Methodist in the area of neural prosthetics. The creation of the Center for Translational Neural Prosthetics and Interfaces is an exciting development toward achieving our common goals."

The team will have a presence on the Rice campus with 25,000 square feet of space in the Rice Neuroengineering Initiative laboratories and experimental spaces in the university's BioScience Research Collaborative. The space at Houston Methodist is still being developed.

"This partnership is a perfect blend of talent," says Rice's Marcia O'Malley, a core member of both the new center and university initiative. "We will be able to design studies to test the efficacy of inventions and therapies and rely on patients and volunteers who want to help us test our ideas. The possibilities are limitless."

From biomolecular research to oral cancer immunotherapy, here are three research projects to watch out for in Houston. Photo via Getty Images

These 3 Houston researchers are revolutionizing health science innovation

research roundup

Research, perhaps now more than ever, is crucial to expanding and growing innovation in Houston — and it's happening across the city right under our noses.

In InnovationMap's latest roundup of research news, a couple local scientists are honored by awards while another duo of specialists tackle a new project.

University of Houston professor recognized with award

Mehmet Orman of UH has been selected to receive an award for his research on persister cells. Photo via UH.edu

Mehmet Orman, assistant professor of chemical and biomolecular engineering at the University of Houston Cullen College of Engineering has been honored with a Faculty Early Career Development Award from the National Science Foundation. The award comes with a $500,000 grant to study persister cells — cells that go dormant and then become tolerant to extraordinary levels of antibiotics.

"Nearly all bacterial cultures contain a small population of persister cells," says Orman in a news release. "Persisters are thought to be responsible for recurring chronic infections such as those of the urinary tract and for creating drug-resistant mutants."

Previously, Orman developed the first methods to directly measure the metabolism of persister cells. He also developed cell sorting strategies to segregate persisters from highly heterogeneous bacterial cell populations, and, according to the release, he will be using his methods in the NSF research project.

Houston researchers collaborate on oral cancer innovation

Dr. Simon Young of UTHealth and Jeffrey Hartgerink of Rice University are working on a new use for an innovative gel they developed. Photo via Rice.edu

Two Houston researchers — chemist and bioengineer Jeffrey Hartgerink at Rice University and Dr. Simon Young at the University of Texas Health Science Center at Houston — have again teamed up to advance their previous development of a sophisticated hydrogel called STINGel. This time, they are using it to destroy oral cancer tumors.

SynerGel combines a pair of antitumor agents into a gel that can be injected directly into tumors. Once there, the gel controls the release of its cargo to not only trigger cells' immune response but also to remove other suppressive immune cells from the tumor's microenvironment. The duo reported on the technology in the American Chemical Society journal ACS Biomaterials Science & Engineering.

SynerGel, combines a pair of antitumor agents into a gel that can be injected directly into tumors, where they not only control the release of the drugs but also remove suppressive immune cells from the tumor's microenvironment.

"We are really excited about this new material," Hartgerink says in a news release. "SynerGel is formulated from a specially synthesized peptide which itself acts as an enzyme inhibitor, but it also assembles into a nanofibrous gel that can entrap and release other drugs in a controlled fashion.

In 2018, the pair published research on the use of a multidomain peptide gel — the original STINGel — to deliver ADU-S100, an immunotherapy drug from a class of "stimulator of interferon gene (STING) agonists."

The research is supported by the Oral and Maxillofacial Surgery Foundation, the National Institutes of Health, the Welch Foundation, the National Science Foundation and the Mexican National Council for Science and Technology.

Texas Heart Institute researcher honored by national organization

Dr. James Martin of Texas Heart Institute has been named a senior member of the National Academy of Inventors. Photo courtesy of THI

The National Academy of Inventors have named Houston-based Texas Heart Institute's Dr. James Martin, director of the Cardiomyocyte Renewal Lab, a senior member.

Martin is an internationally recognized developmental and regenerative biologist and his research is focused on understanding how signaling pathways are related to development and tissue regeneration.

"Dr. Martin has long been a steward of scientific advancement and has proven to be a tremendous asset to the Texas Heart Institute and to its Cardiomyocyte Renewal Lab through his efforts to translate fundamental biological discoveries in cardiac development and disease into novel treatment strategies for cardiac regeneration," says Dr. Darren Woodside, vice president for research at THI, in a news release. "Everyone at the Texas Heart Institute is thrilled for Dr. Martin, whose induction into the NAI as a Senior Member is well-deserved."

Martin has authored over 170 peer-reviewed papers in top journals he holds nine U.S. patents and applications, including one provisional application, all of which have been licensed to Yap Therapeutics, a company he co-founded.

The full list of incoming NAI Senior Members, which includes three professionals from the University of Houston, is available on the NAI website.

From opioid research to plastics recycling, here are three research projects to watch out for in Houston. Photo via Getty Images

Here are 3 breakthrough innovations coming out of research at Houston institutions

Research Roundup

Research, perhaps now more than ever, is crucial to expanding and growing innovation in Houston — and it's happening across the city right under our noses.

In InnovationMap's latest roundup of research projects, we look into studies on robotics advancing stroke patient rehabilitation, the future of opioid-free surgery, and a breakthrough in recycling plastics.

The University of Houston's research on enhancing stroke rehabilitation

A clinical trial from a team at UH found that stroke survivors gained clinically significant arm movement and control by using an external robotic device powered by the patients' own brains. Image via UH.edu

A researcher at the University of Houston has seen positive results on using his robotics on stroke survivors for rehabilitation. Jose Luis Contreras-Vidal, director of UH's Non-Invasive Brain Machine Interface Systems Laboratory, recently published the results of the clinical trial in the journal NeuroImage: Clinical.

The testing proved that most patients retained the benefits for at least two months after the therapy sessions ended, according to a press release from UH, and suggested even more potential in the long term. The study equipped stroke survivors who have limited movement in one arm with a computer program that captures brain activity to determine the subject's intentions and then works with a robotic device affixed to the affected arm, to move in response to those intentions.

"This is a novel way to measure what is going on in the brain in response to therapeutic intervention," says Dr. Gerard Francisco, professor and chair of physical medicine and rehabilitation at McGovern Medical School at The University of Texas Health Science Center at Houston and co-principal investigator, in the release.

"This study suggested that certain types of intervention, in this case using the upper robot, can trigger certain parts of brain to develop the intention to move," he continues. "In the future, this means we can augment existing therapy programs by paying more attention to the importance of engaging certain parts of the brain that can magnify the response to therapy."

The trial was funded by the National Institute of Neurological Disorders and Stroke and Mission Connect, part of the TIRR Foundation. Contreras-Vidal is working on a longer term project with a National Science Foundation grant in order to design a low-cost system that would allow people to continue the treatments at home.

"If we are able to send them home with a device, they can use it for life," he says in the release.

Baylor College of Medicine's work toward opioid-free surgery

A local doctor is focused on opioid-free options. Photo via Getty Images

In light of a national opioid crisis and more and more data demonstrating the negative effects of the drugs, a Baylor College of Medicine orthopedic surgeon has been working to offer opioid-free surgery recovery to his patients.

"Thanks to a number of refinements, we are now able to perform hip and knee replacements, ranging from straightforward to very complex cases, without patients requiring a single opioid pill," says Dr. Mohamad Halawi, associate professor and chief quality officer in the Joseph Barnhart Department of Orthopedic Surgery, in a press release.

"Pain is one of patients' greatest fears when undergoing surgery, understandably so," Halawi continues. "Today, most patients wake up from surgery very comfortable. Gone are the days of trying to catch up with severe pain. It was a vicious cycle with patients paying the price in terms of longer hospitalization, slower recovery and myriad adverse events."

Halawi explains that his work focuses on preventative measures ahead of pain occurring as well as cutting out opioids before surgery.

"Opioid-free surgery is the way of the future, and it has become a standard of care in my practice," he says. "The ability to provide safer and faster recovery to all patients regardless of their surgical complexity is gratifying. I want to make sure that pain is one less thing for patients to worry about during their recovery."

Rice University's breakthrough on recycling plastics

A team of scientists have found a use for a material that comes out of plastics recycling. Photo via Rice.edu

Houston scientists has found a new use for an otherwise useless byproduct that comes from recycling plastics. Rice University chemist James Tour has discovered that turbostratic graphene flakes can be produced from pyrolyzed plastic ash, and those flakes can then be added to other substances like films of polyvinyl alcohol that better resist water in packaging and cement paste and concrete, as well as strengthen the material.

"This work enhances the circular economy for plastics," Tour says in a press release. "So much plastic waste is subject to pyrolysis in an effort to convert it back to monomers and oils. The monomers are used in repolymerization to make new plastics, and the oils are used in a variety of other applications. But there is always a remaining 10% to 20% ash that's valueless and is generally sent to landfills.

Tour's research has appeared in the journal Carbon. The co-authors of the study include Rice graduate students Jacob Beckham, Weiyin Chen and Prabhas Hundi and postdoctoral researcher Duy Xuan Luong, and Shivaranjan Raghuraman and Rouzbeh Shahsavari of C-Crete Technologies. The National Science Foundation, the Air Force Office of Scientific Research and the Department of Energy supported the research.

"Recyclers do not turn large profits due to cheap oil prices, so only about 15% of all plastic gets recycled," said Rice graduate student Kevin Wyss, lead author of the study. "I wanted to combat both of these problems."

A new AI-optimized COVID screening device, a free response resource, and more — here's your latest roundup of research news. Image via Getty Images

These are the latest COVID-19-focused research projects happening at Houston institutions

research roundup

Researchers across the Houston area are working on COVID-19 innovations every day, and scientists are constantly finding new ways this disease is affecting humankind.

From a COVID breathalyzer to a new collaboration in Houston — here's your latest roundup of local coronavirus research news.

A&M System to collaborate on a COVID-19 breathalyzer

A prototype of the device will be used on the Texas A&M campus. Photo via tamu.edu

Researchers at Texas A&M University System are collaborating on a new device that uses artificial intelligence in a breathalyzer situation to detect whether individuals should be tested for COVID-19. The technology is being developed through a collaboration with Dallas-based company, Worlds Inc., and the U.S. Air Force.

The device is called Worlds Protect and a patient can use a disposable straw to blow into a copper inlet. In less than a minute, test results can be sent to the person's smartphone. Worlds Inc. co-founders Dave Copps and Chris Rohde envision Worlds Protect kiosks outside of highly populated areas to act as a screening process, according to a news release.

"People can walk up and, literally, just breathe into the device," says Rohde, president of Worlds Inc., in the release. "It's completely noninvasive. There's no amount of touching. And you quickly get a result. You get a yay or nay."

The university system has contributed $1 million in the project's development and is assisting Worlds Inc. with engineering and design, prototype building and the mapping of a commercial manufacturing process. According to the release, the plan was to test the prototypes will be tried out this fall on the Texas A&M campus.

"Getting tech innovations to market is one of our sweet spots," says John Sharp, chancellor of the Texas A&M System, in the release. "This breakthrough could have lasting impact on global public health."

Baylor College of Medicine researchers to determine cyclosporine’s role in treating hospitalized COVID-19 patients

BCM researchers are looking into the treatment effect of an existing drug on COVID-19 patients. Photo via BCM.edu

The Baylor College of Medicine has launched a randomized clinical trial to look into how the drug cyclosporine effects the prevention of disease progression in pre-ICU hospitalized COVID-19 patients. The drug has been used for about 40 years to prevent rejection of organ transplants and to treat patients with rheumatoid arthritis and psoriasis.

"The rationale is strong because the drug has a good safety profile, is expected to target the body's hyperimmune response to COVID and has been shown to directly inhibit human coronaviruses in the lab," says Dr. Bryan Burt, chief of thoracic surgery in the Michael E. DeBakey Department of Surgery at Baylor, says in a press release.

Burt initiated this trial and BCM is the primary site for the study, with some collaboration with Brigham and Women's. The hypothesis is that the drug will help prevent the cytokine storm that patients with COVID-19 experience that causes their health to decline rapidly, according to the release.

The study, which is funded by Novartis, plans to enroll 75 hospitalized COVID-19 patients at Baylor St. Luke's Medical Center who are not in the ICU. There will be an initial evaluation at six months but Burt expects to have the final study results in one year.

Rice launches expert group to help guide pandemic response

A new response team is emerging out of a collaboration led by Rice University. Photo courtesy of Rice

Rice University is collaborating with other Houston institutions to create the Biomedical Expert Panel, supported by Texas Policy Lab, to assist officials in long-term pandemic recovery.

"Not all agencies and decision-makers have an in-house epidemiologist or easy access to leaders in infectious disease, immunology and health communications," says Stephen Spann, chair of the panel and founding dean of the University of Houston College of Medicine, in a news release. "This panel is about equity. We must break out of our knowledge siloes and face this challenge together, with a commitment to inclusivity and openness."

The purpose of the panel is to be available as a free resource to health departments, social service agencies, school districts and other policymakers. The experts will help design efficient public health surveillance plans, advise on increasing testing capacity and access for underserved communities, and more.

"The precise trajectory of the local epidemic is difficult to predict, but we know that COVID-19 will continue to be a long-term challenge," says E. Susan Amirian, an epidemiologist who leads the TPL's health program, in the release. "Although CDC guidelines offer a good foundation, there is no one-size-fits-all approach when managing a crisis of this magnitude across diverse communities with urgent needs."

Houston-area researchers are innovating health and wellness solutions every day — even focusing on non-pandemic-related issues. Photo via Getty Images

3 research innovations in health care to know about in Houston

Research roundup

Researchers across the world are coming up with innovative breakthroughs regarding the coronavirus, but Houston research institutions are also making health and wellness discoveries outside of COVID-19.

Here are three research innovations from Houston scientists from a new cardiac medical device to artificial intelligence-driven predictive technology for cirrhosis patients.

University of Houston's new implantable cardiac device

A UH researcher has designed a flexible device that can collect key information on the human heart. Photo via UH.edu

Cardiac implants and devices like pacemakers are either made with rigid materials that don't do the moving, beating heart any favors or the devices are made with soft materials but sacrifice the quality of information collected.

Researchers led by Cunjiang Yu, a University of Houston professor of mechanical engineering, have reported in Nature Electronics a new rubbery patch designed to collect electrophysiological activity, temperature, heartbeat and other indicators, while being flexible against the heart.

Yu, who is also a principal investigator with the Texas Center for Superconductivity at UH, is the author of the paper says it's the first time a device has both been flexible and accurate. The device, which generates energy from heart beats and doesn't need an external power source, can both collect information from multiple locations on the heart — also known as spatiotemporal mapping — but it can also offer therapeutic benefits such as electrical pacing and thermal ablation, according to the researchers.

"Unlike bioelectronics primarily based on rigid materials with mechanical structures that are stretchable on the macroscopic level, constructing bioelectronics out of materials with moduli matching those of the biological tissues suggests a promising route towards next-generational bioelectronics and biosensors that do not have a hard–soft interface for the heart and other organs," the researchers wrote. "Our rubbery epicardial patch is capable of multiplexed ECG mapping, strain and temperature sensing, electrical pacing, thermal ablation and energy harvesting functions."

Yu has worked on the development of fully rubbery electronics with sensing and other biological capabilities, including for use in robotic hands, skins and other devices.

Baylor College of Medicine's new tool to predict outcomes of cirrhosis

A new statistical model created from artificial intelligence can more accurately predict cirrhosis outcomes. Image via bcm.edu

Currently, the standard of care for cirrhosis patients is limited because physicians can't accurately predict long-term outcomes. But this might be changing thanks to researchers at Baylor College of Medicine, the Michael E. DeBakey Veteran's Affairs Medical Center, and the Center for Innovations in Quality, Effectiveness and Safety (IQuESt).

According to their study are published in JAMA Network Open, the researchers developed a model using a blend of artificial intelligence and traditional statistical methods to produce a score better predicting mortality in cirrhosis.

"When we see patients in the clinic we want to guide them about their long-term outcomes. We wanted to create a tool using machine learning and artificial intelligence to improve the accuracy of prognosis, while maintaining ease of use in the clinic," says Dr. Fasiha Kanwal, the author of the study and professor of medicine and section chief of gastroenterology at Baylor, in a news release.

The scientists used data collected from patients at 130 hospitals and clinics — such as demographics, comorbidities, underlying risk factors and severity of liver disease — as well as comprehensive laboratory tests and medication data to create three different statistical models to predict risk of mortality.

"Machine learning and artificial intelligence is important. It did help us find the right risk factors to use, but we didn't need to use very complex models to get there. We were able to create the CiMM score that will work easier in the clinic and is more predictive of mortality than the existing method," says Kanwal.

The Cirrhosis Mortality Model (CiMM) performed the best and most accurately and was more predictive than the current prognostic model, known as the Model for End Stage Liver Disease with sodium (MELD-Na).

"This tool could make a big difference in providing patient-centered care. The CiMM score could be reassessed every time a patient comes into the clinic," Kanwal said. "Previously, we were unable to predict anything long term. But the CiMM score could give us an idea of how to manage disease for one, two and three years out."

UTHealth's $11 million grant to study multi-drug resistant infection factors

A local multi-institutional research team has received millions to study drug resistance. Photo via Getty Images

A program at the University of Texas Health Science Center at Houston has received an $11 million grant from the National Institute of Allergy and Infectious Diseases to conduct this five-year study on why some critically ill patients develop multidrug-resistant infections.

The Dynamics of Colonization and Infection by Multidrug-Resistant Pathogens in Immunocompromised and Critically Ill Patients will enroll patients at both Memorial Hermann Hospital-Texas Medical Center and The University of Texas MD Anderson Cancer Center.

According to a news release, the research team will seek to explain the microbial, clinical, and antimicrobial resistance factors of three major multidrug-resistant pathogens: Vancomycin-resistant enterococci, Enterobacterales producing extended spectrum β-lactamases/carbapenemases, and Clostridioides difficile. Note: all three pathogens are resistant to antimicrobial treatment such as antibiotics.

"We want to learn more about how these three classes of organisms colonize the gastrointestinal tract of critically ill patients and, eventually, cause infections in these patient populations," says Dr. Cesar A. Arias, the study's principal investigator and professor of infectious disease at McGovern Medical School at UTHealth.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Space City News: Houston Spaceport receives grant, unicorn hires architecture firm

rocketing roundup

The Space City is starting 2022 off strong with news launching out of the Houston Spaceport — a TK-acre space in TK Houston.

The two big headlines include a unicorn company releasing the latest details of its earthbound project and fresh funds from the state to support the space ecosystem in Texas.

Governor Abbott doles out $10M in spaceport grants

Texas has launched fresh funding into two spaceport projects. Image via fly2houston.com

Last week, Gov. Greg Abbott announced $10 million in funding to two Texas spaceports as a part of the state's Spaceport Trust Fund. The Houston Spaceport Development Corp. received $5 million and the Cameron County Spaceport Development Corp. received $5 million.

The fund is administered by the Governor's Office of Economic Development and Tourism and was created to support the development of spaceport infrastructure, create quality jobs, and attract continuing investments that will strengthen the economic future of the state, according to a news release.

"For decades, Texas has been a trailblazer in space technology and we are proud to help cultivate more innovation and development in this growing industry in Cameron and Harris County," says Abbott in the release. "This investment in the Cameron County and Houston Spaceport Development Corporations will create even more economic opportunities for Texans across the state and continue our legacy as a leader in space technology."

Axiom Space hires Dallas-based architecture and engineering firm

Axiom Space has made progress on developing its 14-acre headquarters. Image via axiomspace.com

Houston-based unicorn Axiom Space has announced that it awarded Dallas-based Jacobs the architecture and engineering phase one design contract. The firm will be working on the 100,000-square-foot facility planned for the 400-acre Houston Spaceport at Ellington Airport.

Axiom Space's plans are ro build the first commercial space station that will provide a central hub for research, to support microgravity experiments, manufacturing, and commerce in low Earth orbit missions, according to a news release.

"This is an exciting and historic moment for Axiom and the greater Houston area," says Axiom CTO Matt Ondler in the release. "For the first time, spacecraft will be built and outfitted right here in Houston, Texas. This facility will provide us with the infrastructure necessary to scale up operations and bring more aerospace jobs to the area. With this new facility, we are not only building next generation spacecraft, but also solidifying Houston as the U.S. commercial industry's gateway to space."

Axiom Space, which raised $130M in venture capital last year, is building out its 14-acre headquarters to accommodate the creation of more than 1,000 high-paying jobs, from engineers to scientists, mathematicians, and machinists.

"Houston is a city built on innovation and is becoming a next-generation tech hub in the United States," says Ron Williams, senior vice president at Jacobs. "Privately funded infrastructure will drive U.S. leadership in space. Jacobs is committed to providing integrated solutions to accelerate the future of commercial space operations."

Houston food charity scores prestigious Amazon tech grant

high tech gift

One of Houston’s most cherished food charities has been recognized for its tech prowess. Houston Food Bank has been awarded the Amazon Web Services (AWS) Imagine Grant.

The endowment honors “the vision and work of nonprofit organizations as they seek to improve their communities and the world with the help of cloud technology,” per a press release.

Specifically, the food bank was recognized in the Go Further, Faster category for the launching of a cloud-native digital logistics platform to better serve vulnerable populations facing food insecurity (that insecurity was greatly exacerbated by the COVID-19 pandemic, the food bank notes.

Each winner in this category receives up to $150,000 in unrestricted funding, up to $100,000 in AWS Promotional Credit, and essential engagement with AWS technical specialists.

The challenges of COVID and the pandemic forced the food bank to get creative — and it responded. The food bank began delivering meals in March 2020 as part of its COVID-19 response through partnerships with volunteers, staff, corporate donors, and organizations such as CrowdSource Rescue, Task Rabbit, and Amazon.

This pilot has been a success: to date, more than 2.3 million meals have been delivered to those in need, the food bank notes in press materials.

Tech-wise, the food bank’s Home Delivery Platform operates using a cloud-native serverless architecture which includes heavy use of AWS services (AWS Lambda, Amazon DynamoDB, Amazon API Gateway, AWS Amplify, and more), with a mobile web responsive front-end written in React/Typescript.

The client side is split across four responsive web applications, each with a different function: Home Delivery management, pantry management, client orders, and driver deliveries. All of these apps utilize shared components and APIs that communicate with each other based on the different user personas.

Pariveda Solutions serves as the technology partner for the implementation of this platform. The project is a capability expansion on top of an existing manual process to deliver food to clients.

Houston Food Bank applied for the Imagine Grant in order to enhance their process digitally, connect submitted orders to the client’s nearest pantry, and manage delivery operations more effectively, with an emphasis on time management and delivery logistics, the organization notes in a release.

“With the success of our home delivery operations, Houston Food Bank’s goal now is to scale operations to expand home delivery for greater reach and impact,” said HFB president/CEO Brian Greene in a statement. “Additionally, with the proposed improvements, we hope to shift to utilizing volunteers for this important service instead of third-party delivery providers, and to deliver food using the client choice model, where clients may select foods based on personal preference, cultural and dietary needs. We are thankful to AWS and Pariveda Solutions for providing their support and expertise as we continue to find new ways to solve the age-old problem of hunger and work towards our ultimate vision of a world that no longer needs food banks.”

------

This article originally ran on CultureMap.

New Ion exec focuses on building density, bridging the gaps within Houston innovation

houston innovator podcast episode 117

After years of being in the works, The Ion Houston opened last year — but not in the way it was always hoping to. With the COVID-19 pandemic, the 300,000-square-foot space in the renovated historic Sears building in Midtown slowly opened its doors to the Houston innovation community and brought back in-person programming as safely as it could.

Despite the challenges the pandemic posed, The Ion, which is owned and operated by Rice Management Company, had a lot to show for 2021 — 95 events on and offline, new coworking space opened, corporate partners built out their offices, and more. And, among the additions to The Ion, was Joey Sanchez, who previously served as director of corporate engagement at Houston Exponential. Sanchez has been in his new role as senior director of ecosystem at The Ion for about three months now.

"I'm focusing specifically on the communities of entrepreneurs, startups, investors — and trying to bridge connections among them," Sanchez says on the Houston Innovators Podcast. "This is the biggest challenge in Houston and we want to flip that with density. Density is really the key to solving connections."

Sanchez says The Ion, and the surrounding Innovation District, is building out to be that convening space for this density of innovation and tech activity.

This month, The Ion is set to deliver on a few of the amenities that have been in the works. First, the investor studio, a place for venture capital investors to meet with local businesses, will open next week. Later this month a high-tech prototyping lab will be unveiled as well as Common Bond, which Sanchez describes as a must-visit coffee shop for Houston's innovators.

"That's going to be the hottest coffee shop in Houston to run into a co-founder, tech talent, an investor — it really is exciting," Sanchez says. "Bridging these connections has been made easier now that I have a home that's as large as this."

Sanchez is familiar with connecting over coffee. He launched a weekly coffee meet up for Houston innovators. He hosts Cup of Joey every Friday morning at Finn Hall in downtown Houston to give everyone in Houston — new or old to the tech ecosystem — a chance to connect. He says he's excited to keep this up throughout 2022 too.

As for taking initial steps into Houston innovation, Sanchez advises attending any of the 400 to 500 events — virtual and in person — that happen in Houston.

"Just show up," Sanchez says. "It's so underrated, and through a pandemic it was obviously tough to do, but just showing up is the first step."

Sanchez shares more about what gets him so excited about Houston innovation on the show. Listen to the full interview below — or wherever you stream your podcasts — and subscribe for weekly episodes