From biomolecular research to oral cancer immunotherapy, here are three research projects to watch out for in Houston. Photo via Getty Images

Research, perhaps now more than ever, is crucial to expanding and growing innovation in Houston — and it's happening across the city right under our noses.

In InnovationMap's latest roundup of research news, a couple local scientists are honored by awards while another duo of specialists tackle a new project.

University of Houston professor recognized with award

Mehmet Orman of UH has been selected to receive an award for his research on persister cells. Photo via UH.edu

Mehmet Orman, assistant professor of chemical and biomolecular engineering at the University of Houston Cullen College of Engineering has been honored with a Faculty Early Career Development Award from the National Science Foundation. The award comes with a $500,000 grant to study persister cells — cells that go dormant and then become tolerant to extraordinary levels of antibiotics.

"Nearly all bacterial cultures contain a small population of persister cells," says Orman in a news release. "Persisters are thought to be responsible for recurring chronic infections such as those of the urinary tract and for creating drug-resistant mutants."

Previously, Orman developed the first methods to directly measure the metabolism of persister cells. He also developed cell sorting strategies to segregate persisters from highly heterogeneous bacterial cell populations, and, according to the release, he will be using his methods in the NSF research project.

Houston researchers collaborate on oral cancer innovation

Dr. Simon Young of UTHealth and Jeffrey Hartgerink of Rice University are working on a new use for an innovative gel they developed. Photo via Rice.edu

Two Houston researchers — chemist and bioengineer Jeffrey Hartgerink at Rice University and Dr. Simon Young at the University of Texas Health Science Center at Houston — have again teamed up to advance their previous development of a sophisticated hydrogel called STINGel. This time, they are using it to destroy oral cancer tumors.

SynerGel combines a pair of antitumor agents into a gel that can be injected directly into tumors. Once there, the gel controls the release of its cargo to not only trigger cells' immune response but also to remove other suppressive immune cells from the tumor's microenvironment. The duo reported on the technology in the American Chemical Society journal ACS Biomaterials Science & Engineering.

SynerGel, combines a pair of antitumor agents into a gel that can be injected directly into tumors, where they not only control the release of the drugs but also remove suppressive immune cells from the tumor's microenvironment.

"We are really excited about this new material," Hartgerink says in a news release. "SynerGel is formulated from a specially synthesized peptide which itself acts as an enzyme inhibitor, but it also assembles into a nanofibrous gel that can entrap and release other drugs in a controlled fashion.

In 2018, the pair published research on the use of a multidomain peptide gel — the original STINGel — to deliver ADU-S100, an immunotherapy drug from a class of "stimulator of interferon gene (STING) agonists."

The research is supported by the Oral and Maxillofacial Surgery Foundation, the National Institutes of Health, the Welch Foundation, the National Science Foundation and the Mexican National Council for Science and Technology.

Texas Heart Institute researcher honored by national organization

Dr. James Martin of Texas Heart Institute has been named a senior member of the National Academy of Inventors. Photo courtesy of THI

The National Academy of Inventors have named Houston-based Texas Heart Institute's Dr. James Martin, director of the Cardiomyocyte Renewal Lab, a senior member.

Martin is an internationally recognized developmental and regenerative biologist and his research is focused on understanding how signaling pathways are related to development and tissue regeneration.

"Dr. Martin has long been a steward of scientific advancement and has proven to be a tremendous asset to the Texas Heart Institute and to its Cardiomyocyte Renewal Lab through his efforts to translate fundamental biological discoveries in cardiac development and disease into novel treatment strategies for cardiac regeneration," says Dr. Darren Woodside, vice president for research at THI, in a news release. "Everyone at the Texas Heart Institute is thrilled for Dr. Martin, whose induction into the NAI as a Senior Member is well-deserved."

Martin has authored over 170 peer-reviewed papers in top journals he holds nine U.S. patents and applications, including one provisional application, all of which have been licensed to Yap Therapeutics, a company he co-founded.

The full list of incoming NAI Senior Members, which includes three professionals from the University of Houston, is available on the NAI website.

From opioid research to plastics recycling, here are three research projects to watch out for in Houston. Photo via Getty Images

Here are 3 breakthrough innovations coming out of research at Houston institutions

Research Roundup

Research, perhaps now more than ever, is crucial to expanding and growing innovation in Houston — and it's happening across the city right under our noses.

In InnovationMap's latest roundup of research projects, we look into studies on robotics advancing stroke patient rehabilitation, the future of opioid-free surgery, and a breakthrough in recycling plastics.

The University of Houston's research on enhancing stroke rehabilitation

A clinical trial from a team at UH found that stroke survivors gained clinically significant arm movement and control by using an external robotic device powered by the patients' own brains. Image via UH.edu

A researcher at the University of Houston has seen positive results on using his robotics on stroke survivors for rehabilitation. Jose Luis Contreras-Vidal, director of UH's Non-Invasive Brain Machine Interface Systems Laboratory, recently published the results of the clinical trial in the journal NeuroImage: Clinical.

The testing proved that most patients retained the benefits for at least two months after the therapy sessions ended, according to a press release from UH, and suggested even more potential in the long term. The study equipped stroke survivors who have limited movement in one arm with a computer program that captures brain activity to determine the subject's intentions and then works with a robotic device affixed to the affected arm, to move in response to those intentions.

"This is a novel way to measure what is going on in the brain in response to therapeutic intervention," says Dr. Gerard Francisco, professor and chair of physical medicine and rehabilitation at McGovern Medical School at The University of Texas Health Science Center at Houston and co-principal investigator, in the release.

"This study suggested that certain types of intervention, in this case using the upper robot, can trigger certain parts of brain to develop the intention to move," he continues. "In the future, this means we can augment existing therapy programs by paying more attention to the importance of engaging certain parts of the brain that can magnify the response to therapy."

The trial was funded by the National Institute of Neurological Disorders and Stroke and Mission Connect, part of the TIRR Foundation. Contreras-Vidal is working on a longer term project with a National Science Foundation grant in order to design a low-cost system that would allow people to continue the treatments at home.

"If we are able to send them home with a device, they can use it for life," he says in the release.

Baylor College of Medicine's work toward opioid-free surgery

A local doctor is focused on opioid-free options. Photo via Getty Images

In light of a national opioid crisis and more and more data demonstrating the negative effects of the drugs, a Baylor College of Medicine orthopedic surgeon has been working to offer opioid-free surgery recovery to his patients.

"Thanks to a number of refinements, we are now able to perform hip and knee replacements, ranging from straightforward to very complex cases, without patients requiring a single opioid pill," says Dr. Mohamad Halawi, associate professor and chief quality officer in the Joseph Barnhart Department of Orthopedic Surgery, in a press release.

"Pain is one of patients' greatest fears when undergoing surgery, understandably so," Halawi continues. "Today, most patients wake up from surgery very comfortable. Gone are the days of trying to catch up with severe pain. It was a vicious cycle with patients paying the price in terms of longer hospitalization, slower recovery and myriad adverse events."

Halawi explains that his work focuses on preventative measures ahead of pain occurring as well as cutting out opioids before surgery.

"Opioid-free surgery is the way of the future, and it has become a standard of care in my practice," he says. "The ability to provide safer and faster recovery to all patients regardless of their surgical complexity is gratifying. I want to make sure that pain is one less thing for patients to worry about during their recovery."

Rice University's breakthrough on recycling plastics

A team of scientists have found a use for a material that comes out of plastics recycling. Photo via Rice.edu

Houston scientists has found a new use for an otherwise useless byproduct that comes from recycling plastics. Rice University chemist James Tour has discovered that turbostratic graphene flakes can be produced from pyrolyzed plastic ash, and those flakes can then be added to other substances like films of polyvinyl alcohol that better resist water in packaging and cement paste and concrete, as well as strengthen the material.

"This work enhances the circular economy for plastics," Tour says in a press release. "So much plastic waste is subject to pyrolysis in an effort to convert it back to monomers and oils. The monomers are used in repolymerization to make new plastics, and the oils are used in a variety of other applications. But there is always a remaining 10% to 20% ash that's valueless and is generally sent to landfills.

Tour's research has appeared in the journal Carbon. The co-authors of the study include Rice graduate students Jacob Beckham, Weiyin Chen and Prabhas Hundi and postdoctoral researcher Duy Xuan Luong, and Shivaranjan Raghuraman and Rouzbeh Shahsavari of C-Crete Technologies. The National Science Foundation, the Air Force Office of Scientific Research and the Department of Energy supported the research.

"Recyclers do not turn large profits due to cheap oil prices, so only about 15% of all plastic gets recycled," said Rice graduate student Kevin Wyss, lead author of the study. "I wanted to combat both of these problems."

A new AI-optimized COVID screening device, a free response resource, and more — here's your latest roundup of research news. Image via Getty Images

These are the latest COVID-19-focused research projects happening at Houston institutions

research roundup

Researchers across the Houston area are working on COVID-19 innovations every day, and scientists are constantly finding new ways this disease is affecting humankind.

From a COVID breathalyzer to a new collaboration in Houston — here's your latest roundup of local coronavirus research news.

A&M System to collaborate on a COVID-19 breathalyzer

A prototype of the device will be used on the Texas A&M campus. Photo via tamu.edu

Researchers at Texas A&M University System are collaborating on a new device that uses artificial intelligence in a breathalyzer situation to detect whether individuals should be tested for COVID-19. The technology is being developed through a collaboration with Dallas-based company, Worlds Inc., and the U.S. Air Force.

The device is called Worlds Protect and a patient can use a disposable straw to blow into a copper inlet. In less than a minute, test results can be sent to the person's smartphone. Worlds Inc. co-founders Dave Copps and Chris Rohde envision Worlds Protect kiosks outside of highly populated areas to act as a screening process, according to a news release.

"People can walk up and, literally, just breathe into the device," says Rohde, president of Worlds Inc., in the release. "It's completely noninvasive. There's no amount of touching. And you quickly get a result. You get a yay or nay."

The university system has contributed $1 million in the project's development and is assisting Worlds Inc. with engineering and design, prototype building and the mapping of a commercial manufacturing process. According to the release, the plan was to test the prototypes will be tried out this fall on the Texas A&M campus.

"Getting tech innovations to market is one of our sweet spots," says John Sharp, chancellor of the Texas A&M System, in the release. "This breakthrough could have lasting impact on global public health."

Baylor College of Medicine researchers to determine cyclosporine’s role in treating hospitalized COVID-19 patients

BCM researchers are looking into the treatment effect of an existing drug on COVID-19 patients. Photo via BCM.edu

The Baylor College of Medicine has launched a randomized clinical trial to look into how the drug cyclosporine effects the prevention of disease progression in pre-ICU hospitalized COVID-19 patients. The drug has been used for about 40 years to prevent rejection of organ transplants and to treat patients with rheumatoid arthritis and psoriasis.

"The rationale is strong because the drug has a good safety profile, is expected to target the body's hyperimmune response to COVID and has been shown to directly inhibit human coronaviruses in the lab," says Dr. Bryan Burt, chief of thoracic surgery in the Michael E. DeBakey Department of Surgery at Baylor, says in a press release.

Burt initiated this trial and BCM is the primary site for the study, with some collaboration with Brigham and Women's. The hypothesis is that the drug will help prevent the cytokine storm that patients with COVID-19 experience that causes their health to decline rapidly, according to the release.

The study, which is funded by Novartis, plans to enroll 75 hospitalized COVID-19 patients at Baylor St. Luke's Medical Center who are not in the ICU. There will be an initial evaluation at six months but Burt expects to have the final study results in one year.

Rice launches expert group to help guide pandemic response

A new response team is emerging out of a collaboration led by Rice University. Photo courtesy of Rice

Rice University is collaborating with other Houston institutions to create the Biomedical Expert Panel, supported by Texas Policy Lab, to assist officials in long-term pandemic recovery.

"Not all agencies and decision-makers have an in-house epidemiologist or easy access to leaders in infectious disease, immunology and health communications," says Stephen Spann, chair of the panel and founding dean of the University of Houston College of Medicine, in a news release. "This panel is about equity. We must break out of our knowledge siloes and face this challenge together, with a commitment to inclusivity and openness."

The purpose of the panel is to be available as a free resource to health departments, social service agencies, school districts and other policymakers. The experts will help design efficient public health surveillance plans, advise on increasing testing capacity and access for underserved communities, and more.

"The precise trajectory of the local epidemic is difficult to predict, but we know that COVID-19 will continue to be a long-term challenge," says E. Susan Amirian, an epidemiologist who leads the TPL's health program, in the release. "Although CDC guidelines offer a good foundation, there is no one-size-fits-all approach when managing a crisis of this magnitude across diverse communities with urgent needs."

Houston-area researchers are innovating health and wellness solutions every day — even focusing on non-pandemic-related issues. Photo via Getty Images

3 research innovations in health care to know about in Houston

Research roundup

Researchers across the world are coming up with innovative breakthroughs regarding the coronavirus, but Houston research institutions are also making health and wellness discoveries outside of COVID-19.

Here are three research innovations from Houston scientists from a new cardiac medical device to artificial intelligence-driven predictive technology for cirrhosis patients.

University of Houston's new implantable cardiac device

A UH researcher has designed a flexible device that can collect key information on the human heart. Photo via UH.edu

Cardiac implants and devices like pacemakers are either made with rigid materials that don't do the moving, beating heart any favors or the devices are made with soft materials but sacrifice the quality of information collected.

Researchers led by Cunjiang Yu, a University of Houston professor of mechanical engineering, have reported in Nature Electronics a new rubbery patch designed to collect electrophysiological activity, temperature, heartbeat and other indicators, while being flexible against the heart.

Yu, who is also a principal investigator with the Texas Center for Superconductivity at UH, is the author of the paper says it's the first time a device has both been flexible and accurate. The device, which generates energy from heart beats and doesn't need an external power source, can both collect information from multiple locations on the heart — also known as spatiotemporal mapping — but it can also offer therapeutic benefits such as electrical pacing and thermal ablation, according to the researchers.

"Unlike bioelectronics primarily based on rigid materials with mechanical structures that are stretchable on the macroscopic level, constructing bioelectronics out of materials with moduli matching those of the biological tissues suggests a promising route towards next-generational bioelectronics and biosensors that do not have a hard–soft interface for the heart and other organs," the researchers wrote. "Our rubbery epicardial patch is capable of multiplexed ECG mapping, strain and temperature sensing, electrical pacing, thermal ablation and energy harvesting functions."

Yu has worked on the development of fully rubbery electronics with sensing and other biological capabilities, including for use in robotic hands, skins and other devices.

Baylor College of Medicine's new tool to predict outcomes of cirrhosis

A new statistical model created from artificial intelligence can more accurately predict cirrhosis outcomes. Image via bcm.edu

Currently, the standard of care for cirrhosis patients is limited because physicians can't accurately predict long-term outcomes. But this might be changing thanks to researchers at Baylor College of Medicine, the Michael E. DeBakey Veteran's Affairs Medical Center, and the Center for Innovations in Quality, Effectiveness and Safety (IQuESt).

According to their study are published in JAMA Network Open, the researchers developed a model using a blend of artificial intelligence and traditional statistical methods to produce a score better predicting mortality in cirrhosis.

"When we see patients in the clinic we want to guide them about their long-term outcomes. We wanted to create a tool using machine learning and artificial intelligence to improve the accuracy of prognosis, while maintaining ease of use in the clinic," says Dr. Fasiha Kanwal, the author of the study and professor of medicine and section chief of gastroenterology at Baylor, in a news release.

The scientists used data collected from patients at 130 hospitals and clinics — such as demographics, comorbidities, underlying risk factors and severity of liver disease — as well as comprehensive laboratory tests and medication data to create three different statistical models to predict risk of mortality.

"Machine learning and artificial intelligence is important. It did help us find the right risk factors to use, but we didn't need to use very complex models to get there. We were able to create the CiMM score that will work easier in the clinic and is more predictive of mortality than the existing method," says Kanwal.

The Cirrhosis Mortality Model (CiMM) performed the best and most accurately and was more predictive than the current prognostic model, known as the Model for End Stage Liver Disease with sodium (MELD-Na).

"This tool could make a big difference in providing patient-centered care. The CiMM score could be reassessed every time a patient comes into the clinic," Kanwal said. "Previously, we were unable to predict anything long term. But the CiMM score could give us an idea of how to manage disease for one, two and three years out."

UTHealth's $11 million grant to study multi-drug resistant infection factors

A local multi-institutional research team has received millions to study drug resistance. Photo via Getty Images

A program at the University of Texas Health Science Center at Houston has received an $11 million grant from the National Institute of Allergy and Infectious Diseases to conduct this five-year study on why some critically ill patients develop multidrug-resistant infections.

The Dynamics of Colonization and Infection by Multidrug-Resistant Pathogens in Immunocompromised and Critically Ill Patients will enroll patients at both Memorial Hermann Hospital-Texas Medical Center and The University of Texas MD Anderson Cancer Center.

According to a news release, the research team will seek to explain the microbial, clinical, and antimicrobial resistance factors of three major multidrug-resistant pathogens: Vancomycin-resistant enterococci, Enterobacterales producing extended spectrum β-lactamases/carbapenemases, and Clostridioides difficile. Note: all three pathogens are resistant to antimicrobial treatment such as antibiotics.

"We want to learn more about how these three classes of organisms colonize the gastrointestinal tract of critically ill patients and, eventually, cause infections in these patient populations," says Dr. Cesar A. Arias, the study's principal investigator and professor of infectious disease at McGovern Medical School at UTHealth.

These are the latest COVID-19-focused research projects happening at Houston institutions. Photo via Getty Images

3 Houston research groups dive into game changing COVID-19 projects

Research roundup

Researchers across Houston are working on COVID-19 innovations every day, and scientists are constantly finding new ways this disease is affecting humankind.

Wastewater detection, mental illness effects, a software solution to testing — here's your latest roundup of research news in Houston.

Baylor College of Medicine working in a group to detect SARS-CoV2 in wastewater

A team of scientists are testing Houston wastewater for traces of SARS-CoV2. Photo by Dwight C. Andrews/Greater Houston Convention and Visitors Bureau

According to researchers at Baylor College of Medicine, who are working in partnership with the Houston Health Department and Rice University, testing the city's wastewater for SARS-CoV2 can help predict where outbreaks are likely to happen.

In May, researchers analyzed wastewater samples that were collected every week from 39 sites in the city and found traces of the virus. The research project was directed by Baylor microbiologist Dr. Anthony Maresso, director of BCM TAILOR Labs.

"This is not Houston's first infectious disease crisis," Maresso says in a news release. "Wastewater sampling was pioneered by Joseph Melnick, the first chair of Baylor's Department of Molecular Virology and Microbiology, to get ahead of polio outbreaks in Houston in the 1960s. This work essentially ushered in the field of environmental virology, and it began here at Baylor. TAILOR Labs is just continuing that tradition by providing advanced science measures to support local public health intervention."

The researchers will continue into 2021 and are working with the city and local governments on their findings.

"It's a cost effective way to gauge Houston's total viral load. It tracks well ahead of positivity rate, 10 days in some cases," sways Dr. Austen Terwilliger, director of operations at TAILOR, in the release. "At the moment, we are at the lowest viral levels since we started sampling, which is excellent news."

University of Houston researchers looking into effect of pandemic on mental illness

Michael Zvolensky, University of Houston professor of psychology, is studying substance abuse as a coping method amid COVID-19. Photo via UH.edu

While physical health and economic impacts of the coronavirus have been the focus of attention amid the pandemic, mental health effects are estimated to inflict more damage if not address, according to new research by Michael Zvolensky, University of Houston professor of psychology and director of the Anxiety and Health Research Laboratory/Substance Use Treatment Clinic.

Zvolensky has published two papers on his research discussing the psychological behavior issues related to the COVID-19 pandemic from a behavioral science perspective, according to a press release from UH.

"The impact of COVID-19 on psychological symptoms and disorders, addiction and health behavior is substantial and ongoing and will negatively impact people's mental health and put them at greater risk for chronic illness and drug addiction," reports Zvolensky in Behaviour Research and Therapy. "It will not equally impact all of society. Those at greater risk are those that have mental health vulnerabilities or disorders."

For those who 'catastrophize' the pandemic, Zvolensky explains in his paper, the impact from stress is increased — as is the possibility for substance abuse.

"That sets in motion a future wave of mental health, addiction and worsening health problems in our society. It's not going to go away, even with a vaccination, because the damage is already done. That's why we're going to see people with greater health problems struggling for generations," says Zvolensky in the release.

He evaluated a group of 160 participants on pandemic-related fear and worry and substance abuse as a coping method. The "results may provide critical clinical information for helping individuals cope with this pandemic," he says.

Bioinformatics research group at Rice University is designing novel SARS-CoV-2 test

Rice University bioinformatics researcher Todd Treangen has created a software solution for a COVID-19 test. Photo via rice.edu

Can software help save lives in this pandemic? A Rice University computer scientist thinks it's worth a shot.

Bioinformatics researcher Todd Treangen is working with a molecular diagnostics company to optimize the design and computational evaluation of molecular detection assays for viral RNA of SARS-CoV-2, according to a press release from Rice. Great Basin Scientific and the Rice researchers hope their work will streamline the development and commercialization of COVID-19 testing.

"This exciting collaboration with Great Basin will allow for computational methods and software developed in my research group to directly contribute to fast, sensitive and affordable detection and monitoring of SARS-CoV-2 and emerging pathogens," Treangen said.

The company, which is based in Salt Lake City, will use Treangen lab's novel bioinformatics software called OliVar to work on the diagnostic test. Great Basin Scientific is expected to seek emergency use authorization for the test from the Food and Drug Administration later this year.

Free mental health care, local COVID-19 testing, and a new great to fund an ongoing study — here's your latest roundup of research news. Image via Getty Images

These are the latest COVID-19-focused research projects happening at Houston institutions

Research roundup

As Houston heads toward the end of summer with no major vaccine or treatment confirmed for COVID-19, local research institutions are still hard at work on various coronavirus-focused innovations.

Free mental health care, local COVID-19 testing, and a new great to fund an ongoing study — here's your latest roundup of research news.

Baylor College of Medicine genomics team to partner for local COVID-19 testing

Houston millionaire to start biotech accelerator for companies focusing on regenerative medicine

Two departments at BCM are working with the county on COVID-19 testing. Getty Images

Two Baylor College of Medicine institutions have teamed up to aid in local COVID-19 testing. The Human Genome Sequencing Center and the Alkek Center for Metagenomics and Microbiome Research — under the leadership of BCM — are partnering with local public health departments to provide polymerase chain reaction testing of COVID-19 samples, according to a news release from BCM.

"We are pleased to work with the outstanding local government groups in this critical public health effort," says Dr. Richard Gibbs, director of the HGSC and Wofford Cain chair and professor of molecular and human genetics at Baylor, in the release. "We are proud of the tireless determination and expertise of our centers and college staff that enabled the rapid development of this robust testing capacity to serve the greater Houston community."

Baylor is among the testing providers for Harris County Public Health, and people can receive testing following a pre-screening questionnaire online.

"We are fortunate to have Baylor College of Medicine as a close partner during the COVID-19 pandemic," says Dr. Umair Shah, executive director of Harris County Public Health, in the release. "This is a challenging time for our community and as the need for increased testing capacity and getting results to residents faster has grown, Baylor has risen to the occasion. There are countless unsung heroes across Harris County who have stepped up to the plate during this pandemic and Baylor College of Medicine is one of them."

COVID-19 testing samples are collected from testing sites and delivered to the Alkek Center. After isolating the virus, genomic material is extracted and sent to the HGSC to quantitative reverse transcription PCR testing. Should the sample's RNA sequence match the virus, then it is positive for COVID-19. The sequencing must test positive three times to be considered overall positive.

Results are returned within 48 hours, and the lab has a capacity of more than 1,000 samples a day. Since May, the team has tested over 30,000 samples.

"We knew we had all the pieces to stand up a testing center fast – large scale clinical sequencing, experts in virology and molecular biology, and a secure way to return results to patients," says Ginger Metcalf, Human Genome Sequencing Center Director of Project Development, in the release. "We are also fortunate to have such great partners at Harris County Public Health, who have done an amazing job of gathering, tracking and delivering samples, especially for the most at-risk members of our community."

National Science Foundation renews Rice University funding amid pandemic

José Onuchic (left) and Peter Wolynes are co-directors of the Center for Theoretical Biological Physics at Rice University. Photo by Jeff Fitlow/Rice University

Rice University's Center for Theoretical Biological Physics has been granted a five-year extension from the National Science Foundation. The grant for $12.9 million will aid in continuing the CTBP's work at the intersection of biology and physics.

The center — which was founded in 2001 at the University of California, San Diego, before moving to Rice in 2011 — is led by Peter Wolynes and José Onuchic.

"We have four major areas at the center," Onuchic says in a news release. "The first is in chromatin theory and modeling, developing the underlying mathematical theory to explain the nucleus of the cell — what Peter calls the 'new nuclear physics.' The second is to test ideas based on the data being created by experimentalists. The third is to understand information processing by gene networks in general, with some applications related to metabolism in cancer. The fourth is to study the cytoskeleton and molecular motors. And the synergy between all of these areas is very important."

Onuchic adds that an upcoming donation of a supercomputer by AMD will help the center's ongoing research into COVID-19 and four institutions — Rice, Northeastern, Baylor College of Medicine and the University of Houston — are working collaboratively on the study,

"We're all set to move on doing major COVID-related molecular simulations on day one," he says in the release. "The full functioning of a center requires a synergy of participation. Rice is the main player with people from multiple departments, but Baylor, Northeastern and Houston play critical roles."

University of Houston offers free mental health therapy for restaurant workers

Texas restaurant workers can get free mental health care from a UH initiative. Photo via Elle Hughes/Pexels

Through a collaboration with Southern Smoke and Mental Health America of Greater Houston, the University of Houston Clinical Psychology program launched a a free mental health care program for Texas-based food and beverage employees and their children.

"During normal times this is a high stress industry where people work very hard in environments where they are just blowing and going all the time," says John P. Vincent, professor of psychology and director of the UH Center for Forensic Psychology, in a news release.

The program has 14 graduate students who converse with a total of 30 patients and meet weekly with supervisors at UH.

"This opportunity allows our clinical program to reach people in the community who usually don't have access to mental health services," says Carla Sharp, professor of psychology and director of clinical training, in the release.

For restaurant industry workers looking for help and care, they can visit the Mental Health Services page on Southern Smoke's website.

According to Vincent, this is just the beginning.

"We're discussing it," says Vincent in the release. "But as far as I'm concerned it can just keep going and going."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

5 can't-miss innovation events at CERAWeek featuring Houston speakers

where to be online

While usually hundreds of energy experts, C-level executives, diplomats, members of royal families, and more descend upon Houston for the the annual CERAWeek by IHS Markit conference, this year will be a little different. Canceled last year due to COVID-19, CERAWeek is returning — completely virtually.

The Agora track is back and focused on innovation within the energy sector. The Agora track's events — thought-provoking panels, intimate pods, and corporate-hosted "houses" — can be accessed through a virtual atrium.

Undoubtedly, many of the panels will have Houston representatives considering Houston's dominance in the industry, but here are five innovation-focused events you can't miss during CERAWeek that feature Houstonians.

Monday — New Horizons for Energy & Climate Research

The COVID-19 pandemic has made vivid and real the risks of an uncontrolled virus. Risks posed by climate change are also becoming more palpable every day. At the forefront of understanding these risks, universities are developing solutions by connecting science, engineering, business, and public policy disciplines. Along with industry and governments, universities are critical to developing affordable and sustainable solutions to meet the world's energy needs and achieve net-zero emission goals. Can the dual challenge of more energy and lower emissions be met? What is some of the most promising energy and climate research at universities? Beyond research, what are the roles and responsibilities of universities in the energy transition?

Featuring: Kenneth B. Medlock, III, James A. Baker, III, and Susan G. Baker Fellow In Energy And Resource Economics, Baker Institute and Senior Director, Center For Energy Studies at Rice University

Catch the panel at 1 pm on Monday, March 1. Learn more.

Tuesday — Conversations in Cleantech: Powering the energy transition

With renewables investment outperforming oil and gas investment for the first time ever in the middle of a pandemic, 2020 was a tipping point in the Energy Transition. Low oil prices intensified energy majors' attention on diversification and expansion into mature and emerging clean technologies such as battery storage, low-carbon hydrogen, and carbon removal technologies. Yet, the magnitude of the Energy Transition challenge requires an acceleration of strategic decisions on the technologies needed to make it happen, policy frameworks to promote public-private partnerships, and innovative investment schemes.

Three Cleantech leaders share their challenges, successes, and lessons learned at the forefront of the Energy Transition. What is their vision and strategy to accelerate lowering emissions and confronting climate change? Can companies develop clear strategies for cleantech investments that balance sustainability goals and corporate returns? What is the value of increasing leadership diversity for energy corporations? Can the Energy Transition be truly transformational without an inclusive workforce and a diverse leadership?

Featuring: Emily Reichert, CEO of Greentown Labs, which is opening a location in Houston this year.

The event takes place at 11:30 am on Tuesday, March 2. Learn more.

Wednesday — Rice Alliance Venture Day at CERAWeek

The Rice Alliance for Technology and Entrepreneurship pitch event will showcase 20 technology companies with new solutions for the energy industry. Each presentation will be followed by questions from a panel of industry experts.

Presenting Companies: Acoustic Wells, ALLY ENERGY, Bluefield Technologies, Cemvita Factory, Connectus Global, Damorphe, Ovopod Ltd., DrillDocs, GreenFire Energy, inerG, Locus Bio-Energy Solutions, Nesh, Pythias Analytics, REVOLUTION Turbine Technologies, Revterra, ROCSOLE, Senslytics, Subsea Micropiles, Syzygy Plasmonics, Transitional Energy, and Universal Subsea.

The event takes place at 9 am on Wednesday, March 3. Learn more.

Thursday — How Will the Energy Innovation Ecosystem Evolve?

Although the cleantech innovation ecosystem—research institutions, entrepreneurs, financiers, and support institutions—is diverse and productive, converting cleantech discoveries and research breakthroughs into commercially viable, transformative energy systems has proven difficult. With incumbent energy systems economically efficient and deeply entrenched, cleantech innovation faces a fundamental dilemma—the scale economies necessary to compete require a large customer base that does not yet exist. How is our clean energy innovation ecosystem equipped to be transformative? What needs to be strengthened? Is it profitable to focus on individual elements, or should we consider the system holistically, and reframe our expectations?

Featuring: Barbara Burger, vice president of innovation at Chevron and president at Chevron Technology Ventures

The event takes place at 7:30 am on Thursday, March 4. Learn more.

Friday — Cities: Managing crises & the future of energy

Houston is the capital of global energy and for the past four decades the home of CERAWeek. Mayor Sylvester Turner will share lessons from the city's experience with the pandemic, discuss leadership strategies during times of crisis, and explore Houston's evolving role in the new map of energy.

The event takes place at 8 am on Friday, March 5. Learn more.

Rice University develops 2 new innovative tools to detect COVID-19

pandemic tech

Rice University is once again spearheading research and solutions in the ongoing battle with COVID-19. The university announced two developing innovations: a "real-time sensor" to detect the virus and a cellphone tool that can detect the disease in less than an hour.

Sensing COVID
Researchers at Rice received funding for up to $1 million to develop the real-time sensor that promises to detect minute amounts of the airborne virus.

Teams at Rice and the University of Texas Medical Branch (UTMB) at Galveston are working to develop a thin film electronic device that senses as few as eight SARS-CoV-2 viruses in 10 minutes of sampling air flowing at 8 liters per minute, per a press release.

Dubbed the Real-Time Amperometric Platform Using Molecular Imprinting for Selective Detection of SARS-CoV-2 (or, RAPID), the project has been funded by the Defense Advanced Research Projects Agency (DARPA), Rice notes. Further funding will be contingent upon a successful demonstration of the technology.

Attacking with an app
Meanwhile, the university announced that its engineers have developed a plug-in tool that can diagnose COVID-19 in around 55 minutes. The tool utilizes programmed magnetic nanobeads and a tool that plugs into a basic cellphone.

First, a stamp-sized microfluidic chip measures the concentration of SARS-CoV-2 nucleocapsid protein in blood serum from a standard finger prick.

Then, nanobeads bind to SARS-CoV-2 N protein, a biomarker for COVID-19, in the chip and transport it to an electrochemical sensor that detects minute amounts of the biomarker. Paired with a Google Pixel 2 phone and a plug-in tool, researchers quickly secured a positive diagnosis.

This, researchers argue, simplifies sample handling compared to swab-based PCR tests that must be analyzed in a laboratory.

"What's great about this device is that it doesn't require a laboratory," said Rice engineer Peter Lillehoj in a statement. "You can perform the entire test and generate the results at the collection site, health clinic or even a pharmacy. The entire system is easily transportable and easy to use."

------

This article originally ran on CultureMap.