Xiaoyu Yang, a graduate student at Rice, is the lead author on a study published in the journal Science on smart cell design. Photo by Jeff Fitlow/ Courtesy Rice University

Bioengineers at Rice University have developed a “new construction kit” for building custom sense-and-respond circuits in human cells, representing a major breakthrough in the field of synthetic biology, which could "revolutionize" autoimmune disease and cancer therapeutics.

In a study published in the journal Science, the team focused on phosphorylation, a cellular process in the body in which a phosphate group is added to a protein, signaling a response. In multicellular organisms, phosphorylation-based signaling can involve a multistage, or a cascading-like effect. Rice’s team set out to show that each cycle in a cascade can be treated as an elementary unit, meaning that they can be reassembled in new configurations to form entirely novel pathways linking cellular inputs and outputs.

Previous research on using phosphorylation-based signaling for therapeutic purposes has focused on re-engineering pathways.

“This opens up the signaling circuit design space dramatically,” Caleb Bashor, assistant professor of bioengineering and biosciences and corresponding author on the study, said in a news release. “It turns out, phosphorylation cycles are not just interconnected but interconnectable … Our design strategy enabled us to engineer synthetic phosphorylation circuits that are not only highly tunable but that can also function in parallel with cells’ own processes without impacting their viability or growth rate.”

Bashor is the deputy director for the Rice Synthetic Biology Institute, which launched last year.

The Rice lab's sense-and-respond cellular circuit design is also innovative because phosphorylation occurs rapidly. Thus, the new circuits could potentially be programmed to respond to physiological events in minutes, compared to other methods, which take hours to activate.

Rice’s team successfully tested the circuits for sensitivity and their ability to respond to external signals, such as inflammatory issues. The researchers then used the framework to engineer a cellular circuit that can detect certain factors, control autoimmune flare-ups and reduce immunotherapy-associated toxicity.

“This work brings us a whole lot closer to being able to build ‘smart cells’ that can detect signs of disease and immediately release customizable treatments in response,” Xiaoyu Yang, a graduate student in the Systems, Synthetic and Physical Biology Ph.D. program at Rice who is the lead author on the study, said in a news release.

Ajo-Franklin, a professor of biosciences, bioengineering, chemical and biomolecular engineering and a Cancer Prevention and Research Institute of Texas Scholar, added “the Bashor lab’s work vaults us forward to a new frontier — controlling mammalian cells’ immediate response to change.”

The WaTER Institute is housed in Rice University's Ralph S. O'Connor Building. Photo via Rice.edu

Rice University harnesses nanotech to revolutionize clean water access

getting clean

Researchers at Rice University are making cleaner water through the use of nanotech.

Decades of research have culminated in the creation of the Water Technologies Entrepreneurship and Research (WaTER) Institute launched in January 2024 and its new Rice PFAS Alternatives and Remediation Center (R-PARC).

“Access to safe drinking water is a major limiting factor to human capacity, and providing access to clean water has the potential to save more lives than doctors,” Rice’s George R. Brown Professor of Civil and Environmental Engineering Pedro Alvarez says in a news release.

The WaTER Institute has made advancements in clean water technology research and applications established during a 10-year period of Nanotechnology Enabled Water Treatment (NEWT), which was funded by the National Science Foundation. R-PARC will use the institutional investments, which include an array of PFAS-dedicated advanced analytical equipment.

Alvarez currently serves as director of NEWT and the WaTER Institute. He’s joined by researchers that include Michael Wong, Rice’s Tina and Sunit Patel Professor in Molecular Nanotechnology, chair and professor of chemical and biomolecular engineering and leader of the WaTER Institute’s public health research thrust, and James Tour, Rice’s T.T. and W.F. Chao Professor of Chemistry and professor of materials science and nanoengineering.

“We are the leaders in water technologies using nano,” adds Wong. “Things that we’ve discovered within the NEWT Center, we’ve already started to realize will be great for real-world applications.”

The NEWT center plans to equip over 200 students to address water safety issues, and assist/launch startups.

“Across the world, we’re seeing more serious contamination by emerging chemical and biological pollutants, and climate change is exacerbating freshwater scarcity with more frequent droughts and uncertainty about water resources,” Alvarez said in a news release. “The Rice WaTER Institute is growing research and alliances in the water domain that were built by our NEWT Center.”

The University of Houston and Heriot-Watt University in Scotland have secured funding for six energy projects. Photo via UH.edu

University of Houston taps global partner to work on hydrogen, sustainability breakthroughs

team work

The University of Houston and Scotland’s Heriot-Watt University have been awarded seed grants to six energy projects, which is part of an innovative transatlantic research collaboration.

Researchers from both universities will take on projects that will concentrate on innovations that range from advanced hydrogen sensing technology to converting waste into sustainable products.

This will mark the first round of awards under the “UH2HWU” seed grant program. The program was created following the signing of a memorandum of understanding between both institutions in 2024. The universities will “seek to drive global progress in energy research, education, and innovation, with a particular focus on hydrogen as a key element in the shift toward cleaner energy,” according to a news release.

“This partnership is rooted in a shared commitment to advancing research that supports a just energy transition,” Ramanan Krishnamoorti, vice president for energy and innovation at UH, says in a news release. “Hydrogen, and in particular low carbon hydrogen, is essential to achieving sustainable energy solutions.”

The UH2HWU program provided $20,000 in seed funding to each of the projects. The program will help with the goal of helping researchers secure additional funding from private sources, companies, and government with a total of 11 proposals being submitted, and a panel of industry experts reviewing them.

One of the winning projects was titled “A joint research project on the feasibility of Repurposing Offshore Infrastructure for Clean Energy in the North Sea aka ROICE North Sea,” and was led by Ram Seetharam, ROICE Program executive director at UH, Edward Owens, professor of energy, geoscience, infrastructure and society at HWU, and Sandy Kerr, associate professor of economics at HWU.

The UH ROICE team focused on reusing old offshore structures for clean energy instead of removing them after their productive life. The UH team created cost and project models for the Gulf of Mexico and will now work with Heriot-Watt University to apply to UK North Sea. UK North Sea has over 250 platforms and about 50,000 kilometers of pipelines. To see more of the projects click here.

“We wanted to bring in industry experts to not only assess the quality of the proposals but also to attract industry support of the projects,” assistant vice president for intellectual property and industrial engagement at UH Michael Harold said in a news release. “It’s a win-win —reviewers get a first look at cutting-edge ideas, and the projects have a chance to build industry interest for future development.”

------

This article originally ran on EnergyCapital.

Ten Rice University energy innovators have been selected for the Chevron Energy Graduate Fellowship. Photo by of Jeff Fitlow/Rice University

Chevron names inaugural cohort of Houston energy innovators

research ready

Anew program from Rice University and Chevron has named its inaugural cohort.

Funded by Chevron, the Chevron Energy Graduate Fellowship will provide $10,000 each to 10 Rice graduate students for the current academic year, which supports research in energy-related fields.

The Rice Sustainability Institute (RSI) hosted the event to introduce the inaugural cohort of the Rice Chevron Energy Graduate Fellowship at the Ralph S. O’Connor Building for Engineering and Science. Director of the RSI and the W. Maurice Ewing Professor in Earth, Environmental and Planetary Sciences, Carrie Masiello presented each fellow with a certificate during the ceremony.

“This fellowship supports students working on a wide range of topics related to scalable innovations in energy production that will lead to the reduction of carbon dioxide emissions,” Masiello says in a news release. “It’s important that we recognize the importance of intellectual diversity to the kind of problem-solving we have to do as we accomplish the energy transition.”

The work of the students focuses on creating "real-world, scalable solutions to transform the energy landscape,” per the Rice release. Recipients of the fellowship will research solutions to energy challenges that include producing eco-friendly hydrogen alternatives to fossil fuels and recycling lithium-ion batteries.

Some of the fellows' work will focus on renewable fuels and carbon-capture technologies, biological systems to sequester carbon dioxide, and the potential of soil organic carbon sequestration on agricultural land if we remove the additionality constraint. Xi Chen, a doctoral student in materials science and nanoengineering, will use microwave-assisted techniques to recycle lithium-ion batteries sustainably.

Rice President Reginald DesRoches began the event by stressing the importance of collaboration. Ramamoorthy Ramesh, executive vice president for research at Rice, echoed that statement appearing via Zoom to applaud the efforts of doing what is right for the planet and having a partner in Chevron.

“I’m excited to support emerging leaders like you all in this room, who are focused on scalable, innovative solutions because the world needs them,” Chris Powers, vice president of carbon capture, utilization and storage and emerging at Chevron New Energies and a Rice alum, says at the event. “Innovation and collaboration across sectors and borders will be key to unlocking the full potential of lower carbon energies, and it’s groups like you, our newest Chevron Fellows, that can help move the needle when it comes to translating, or evolving, the energy landscape for the future.”

To see a full list of fellows, click here.

------

This article originally ran on EnergyCapital.

Using biased statistics in hiring makes it more difficult to predict job performance. Photo via Getty Images

Houston research finds race, gender ineffective predictors of employee productivity

houston voices

The Latin phrase scientia potentia est translates to “knowledge is power.”

In the world of business, there’s a school of thought that takes “knowledge is power” to an extreme. It’s called statistical discrimination theory. This framework suggests that companies should use all available information to make decisions and maximize profits, including the group characteristics of potential hires — such as race and gender — that correlate with (but do not cause) productivity.

Statistical discrimination theory suggests that if there's a choice between equally qualified candidates — let's say, a man and a woman — the hiring manager should use gender-based statistics to the company's benefit. If there's data showing that male employees typically have larger networks and more access to professional development opportunities, the hiring manager should select the male candidate, believing such information points to a more productive employee.

Recent research suggests otherwise.

A peer-reviewed study out of Rice Business and Michigan Ross undercuts the premise of statistical discrimination theory. According to researchers Diana Jue-Rajasingh (Rice Business), Felipe A. Csaszar (Michigan) and Michael Jensen (Michigan), hiring outcomes actually improve when decision-makers ignore statistics that correlate employee productivity with characteristics like race and gender.

Here's Why “Less is More”

Statistical discrimination theory assumes a correlation between individual productivity and group characteristics (e.g., race and gender). But Jue-Rajasingh and her colleagues highlight three factors that undercut that assumption:

  • Environmental uncertainty
  • Biased interpretations of productivity
  • Decision-maker inconsistency

This third factor plays the biggest role in the researchers' model. “For statistical discrimination theory to work,” Jue-Rajasingh says, “it must assume that managers are infallible and decision-making conditions are optimal.”

Indeed, when accounting for uncertainty, inconsistency and interpretive bias, the researchers found that using information about group characteristics actually reduces the accuracy of job performance predictions.

That’s because the more information you include in the decision-making process, the more complex that process becomes. Complex processes make it more difficult to navigate uncertain environments and create more space for managers to make mistakes. It seems counterintuitive, but when firms use less information and keep their processes simple, they are more accurate in predicting the productivity of their hires.

The less-is-more strategy is known as a “heuristic.” Heuristics are simple, efficient rules or mental shortcuts that help decision-makers navigate complex environments and make judgments more quickly and with less information. In the context of this study, published by Organization Science, the heuristic approach suggests that by focusing on fewer, more relevant cues, managers can make better hiring decisions.

Two Types of Information "Cues"

The “less is more” heuristic works better than statistical discrimination theory largely because decision makers are inconsistent in how they weight the available information. To factor for inconsistency, Jue-Rajasingh and her colleagues created a model that reflects the “noise” of external factors, such as a decision maker’s mood or the ambiguity of certain information.

The model breaks the decision-making process into two main components: the environment and the decision maker.

In the environment component, there are two types of information, or “cues,” about job candidates. First, there’s the unobservable, causal cue (e.g., programming ability), which directly relates to job performance. Second, there's the observable, discriminatory cue (e.g., race or gender), which doesn't affect how well someone can do the job but, because of how society has historically worked, might statistically seem connected to job skills.

Even if the decision maker knows they shouldn't rely too much on information like race or gender, they might still use it to predict productivity. But job descriptions change, contexts are unstable, and people don’t consistently consider all variables. Between the inconsistency of decision-makers and the environmental noise created by discriminatory cues, it’s ultimately counterproductive to consider this information.

The Bottom Line

Jue-Rajasingh and her colleagues find that avoiding gender- and race-based statistics improves the accuracy of job performance predictions. The fewer discriminatory cues decision-makers rely on, the less likely their process will lead to errors.

That said: With the advent of AI, it could become easier to justify statistical discrimination theory. The element of human inconsistency would be removed from the equation. But because AI is often rooted in biased data, its use in hiring must be carefully examined to prevent worsening inequity.

------

This article originally ran on Rice Business Wisdom based on research by Rice University's Diana Jue-Rajasingh, Felipe A. Csaszar (Michigan) and Michael Jensen (Michigan). For more, see Csaszar, et al. “When Less is More: How Statistical Discrimination Can Decrease Predictive Accuracy.”

The new center is specifically designed to allow patients to be on the cutting edge of testing brand-new therapies that could save their lives.

Houston cancer-fighting organization launches center to support early clinical trials

new to hou

Cancer treatment in Houston just became even more promising — and forward-thinking.

Phase 1 clinical trials are necessary to prove the efficacy in humans of treatments that have appeared promising in lab trials. In the name of cancer-fighting innovation, Baylor College of Medicine’s Dan L. Duncan Comprehensive Cancer Center has launched the Albert and Margaret Alkek Foundation Center for Experimental Therapeutics.

The new center is specifically designed to allow patients to be on the cutting edge of testing brand-new therapies that could save their lives.

“Clinical trials are critical for advancing the field of oncology and improving outcomes for cancer patients. Phase 1 trials are the first step in bringing innovative therapies to the clinic,” says Dr. Benjamin Musher, Barry S. Smith endowed professor at Baylor and medical director of medical oncology at the Duncan Cancer Center McNair Campus, in a news release. “Our new program will build on the success of previous phase 1 trials at Baylor and provide robust infrastructure to offer more clinical trial opportunities to our patients.”

The Alkek Foundation Center’s team practices across all specialty areas, allowing a broad swath of the Cancer Center’s patients to take part and to continue to receive care from the sub-specialty doctors they know and trust. And even if they aren’t already being treated at Baylor, physicians from outside Baylor can refer patients to the program through a smooth process.

“We are excited to offer novel research treatment options to our cancer patients at our state-of-the-art unit,” says Dr. Pavan Reddy, director of the Dan L Duncan Comprehensive Cancer Center and senior associate dean of cancer programs at Baylor. “This program will increase the scope of our research while giving the cancer patients in our community access to first in human and cutting-edge clinical trials.”

Patients will be treated at Duncan Cancer Center’s clinical home, Baylor St. Luke’s Medical Center’s O’Quinn Medical Tower at the McNair Campus. As interim dean of research and dean of the Graduate School of Biomedical Sciences at Baylor, Carolyn Smith says, with the new center, Baylor is “advancing medicine by taking innovations made in the lab and moving them to the bedside.”

The debut trial to take place at the center enrolled its first patient this month. It will test a novel therapy that targets a mutation commonly found in pancreatic and colorectal cancers.

“Phase 1 oncology clinical trials provide patients early access to cutting-edge therapeutics and immunotherapies that are not widely available. Patients in these trials are often selected because their tumors have a molecular feature that is targeted by these therapies,” says Dr. S. Gail Eckhardt, who is Baylor’s Albert and Margaret Alkek endowed chair and serves as associate dean for experimental therapeutics at Baylor and associate director of translational research at the Duncan Cancer Center.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas falls to bottom of national list for AI-related job openings

jobs report

For all the hoopla over AI in the American workforce, Texas’ share of AI-related job openings falls short of every state except Pennsylvania and Florida.

A study by Unit4, a provider of cloud-based enterprise resource planning (ERP) software for businesses, puts Texas at No. 49 among the states with the highest share of AI-focused jobs. Just 9.39 percent of Texas job postings examined by Unit4 mentioned AI.

Behind Texas are No. 49 Pennsylvania (9.24 percent of jobs related to AI) and No. 50 Florida (9.04 percent). One spot ahead of Texas, at No. 47, is California (9.56 percent).

Unit4 notes that Texas’ and Florida’s low rankings show “AI hiring concentration isn’t necessarily tied to population size or GDP.”

“For years, California, Texas, and New York dominated tech hiring, but that’s changing fast. High living costs, remote work culture, and the democratization of AI tools mean smaller states can now compete,” Unit4 spokesperson Mark Baars said in a release.

The No. 1 state is Wyoming, where 20.38 percent of job openings were related to AI. The Cowboy State was followed by Vermont at No. 2 (20.34 percent) and Rhode Island at No. 3 (19.74 percent).

“A company in Wyoming can hire an AI engineer from anywhere, and startups in Vermont can build powerful AI systems without being based in Silicon Valley,” Baars added.

The study analyzed LinkedIn job postings across all 50 states to determine which ones were leading in AI employment. Unit4 came up with percentages by dividing the total number of job postings in a state by the total number of AI-related job postings.

Experts suggest that while states like Texas, California and Florida “have a vast number of total job postings, the sheer volume of non-AI jobs dilutes their AI concentration ratio,” according to Unit4. “Moreover, many major tech firms headquartered in California are outsourcing AI roles to smaller, more affordable markets, creating a redistribution of AI employment opportunities.”

Houston energy trailblazer Fervo closes $462 million Series E

Fresh Funds

Houston-based geothermal energy company Fervo Energy has closed an oversubscribed $462 million series E funding round, led by new investor B Capital.

“Fervo is setting the pace for the next era of clean, affordable, and reliable power in the U.S.,” Jeff Johnson, general partner at B Capital, said in a news release.

“With surging demand from AI and electrification, the grid urgently needs scalable, always-on solutions, and we believe enhanced geothermal energy is uniquely positioned to deliver. We’re proud to support a team with the technical leadership, commercial traction, and leading execution capabilities to bring the world’s largest next-generation geothermal project online and make 24/7 carbon-free power a reality.”

The financing reflects “strong market confidence in Fervo’s opportunity to make geothermal energy a cornerstone of the 24/7 carbon-free power future,” according to the company. The round also included participation from Google, a longtime Fervo Partner, and other new and returning investors like Devon Energy, Mitsui & Co., Ltd., Mitsubishi Heavy Industries and Centaurus Capital. Centaurus Capital also recently committed $75 million in preferred equity to support the construction of Cape Station Phase I, Fervo noted in the release.

The latest funding will support the continued buildout of Fervo’s Utah-based Cape Station development, which is slated to start delivering 100 MW of clean power to the grid beginning in 2026. Cape Station is expected to be the world's largest next-generation geothermal development, according to Fervo. The development of several other projects will also be included in the new round of funding.

“This funding sharpens our path from breakthrough technology to large-scale deployment at Cape Station and beyond,” Tim Latimer, CEO and co-founder of Fervo, added in the news release. “We’re building the clean, firm power fleet the next decade requires, and we’re doing it now.”

Fervo recently won Scaleup of the Year at the 2025 Houston Innovation Awards, and previously raised $205.6 million in capital to help finance the Cape Station earlier this year. The company fully contracted the project's capacity with the addition of a major power purchase agreement from Shell this spring. Fervo’s valuation has been estimated at $1.4 billion and includes investments and support from Bill Gates.

“This new investment makes one thing clear: the time for geothermal is now,” Latimer added in a LinkedIn post. “The world desperately needs new power sources, and with geothermal, that power is clean and reliable. We are ready to meet the moment, and thrilled to have so many great partners on board.”

---

This article originally appeared on EnergyCapitalHTX.com.

Baylor center receives $10M NIH grant to continue rare disease research

NIH funding

Baylor College of Medicine’s Center for Precision Medicine Models received a $10 million, five-year grant from the National Institutes of Health last month that will allow it to continue its work studying rare genetic diseases.

The Center for Precision Medicine Models creates customized cell, fly and mouse models that mimic specific genetic variations found in patients, helping scientists to better understand how genetic changes cause disease and explore potential treatments.

The center was originally funded by an NIH grant, and its models have contributed to the discovery of several new rare disease genes and new symptoms caused by known disease genes. It hosts an online portal that allows physicians, families and advocacy groups to nominate genetic variants or rare diseases that need further investigation or new treatments.

Since its founding in 2020, it has received 156 disease/variant nominations, accepted 63 for modeling and produced more than 200 precision models, according to Baylor.

The center plans to use the latest round of funding to bring together more experts in rare disease research, animal modeling and bioinformatics, and to expand its focus and model more complex diseases.

Dr. Jason Heaney, associate professor in the Department of Molecular and Human Genetics at BCM, serves as the lead principal investigator of the center.

“The Department of Molecular and Human Genetics is uniquely equipped to bring together the diverse expertise needed to connect clinical human genetics, animal research and advanced bioinformatics tools,” Heaney added in the release. “This integration allows us to drive personalized medicine forward using precision animal models and to turn those discoveries into better care for patients.”