The inaugural Activate Houston cohort has 11 fellows across energy, materials, life sciences, space, and other sectors. Photo via activate.org

A national hardtech-focused organization has named its 2024 batch of innovators, which includes the inaugural Houston-based cohort.

Activate named 62 fellows and 50 companies for is latest class, which spans Berkley, California — where the organization is based, Boston, New York, and Houston. Additionally, Activate Anywhere, the program's virtual and remote cohort, was named. According to Activate, it received over 1,000 applicants.

“People, not ideas alone, move the world forward. It is through the drive and determination of brilliant scientists and engineers that we are witnessing true progress,” says Activate CEO Cyrus Wadia in a news release. “Our current Activate Fellows and alumni are already pioneering innovative solutions that make a measurable difference. We’re thrilled to support the next 62 visionaries who will lead the charge in addressing our most urgent issues through groundbreaking science and technology.”

It's the first year Activate has hosted a Houston-based cohort. The organization initially announced its expansion early last year. The inaugural cohort has 11 fellows across energy, materials, life sciences, space, and other sectors.

The named Houston fellows selected for the 2024 class include:

  • Krish Mehta, founder and CEO of Phoenix Materials, a company that decarbonizes concrete using industrial waste.
  • Gabriel Cossio, founder and CEO of Nanoscale Labs, which is developing a high-throughput and low-cost nanomanufacturing system.
  • Matthew McDermott, founder and CEO of Refound Materials, a materials technology company developing more efficient synthesis recipes for accelerated materials discovery.
  • Alec Ajnsztajn, founder and CEO of Coflux Purification, a company that's creating a product that allows industries and water providers to cheaply remove forever chemicals to provide safe drinking water at a fraction of current energy use.
  • Ryan DuChanois and Yang Xia , co-founders of Solidec, a Houston-based startup redefining chemical manufacturing.
  • Meagan Pitcher, co-founder and CEO of Bairitone Health, which brings advanced imaging diagnostics into the home environment.
  • Wei Meng, co-founder and CEO of LumiStrain, a startup offering novel technology for mechanical strain mapping.
  • Sonia Dagan of Atolla Tech, which is developing a lidar and machine-learning algorithm for identifying and quantifying airborne insects.
  • Rodrigo Alvarez-Icaza, founder and CEO of Elysium Robotics, a company that's replacing electric motors with muscle-like actuators to enable massive deployment of highly capable and low-cost robotic systems.
  • Blake Herren, CEO and Co-founder of Raven Space Systems, which is modernizing composite manufacturing with 3D printing and Industry 4.0 solutions to build the factories of the future.

------

This article originally ran on EnergyCapital.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

United breaks ground on $177 million facility and opens tech center at IAH

off the ground

United Airlines announced new infrastructure investments at George Bush Intercontinental Airport as part of the company’s ongoing $3.5 billion investment into IAH.

United broke ground on a new $177 million Ground Service Equipment (GSE) Maintenance Facility this week that will open in 2027.

The 140,000-square-foot GSE facility will support over 1,800 ground service vehicles and with expansive repair space, shop space and storage capacity. The GSE facility will also be targeted for LEED Silver certification. United believes this will provide more resources to assist with charging batteries, fabricating metal and monitoring electronic controls with improved infrastructure and modern workspaces.

Additionally, the company opened its new $16 million Technical Operations Training Center.

The center will include specialized areas for United's growing fleet, and advanced simulation technology that includes scenario-based engine maintenance and inspection training. By 2032, the Training Center will accept delivery of new planes. This 91,000-square-foot facility will include sheet metal and composite training shops as well.

The Training Center will also house a $6.3 million Move Team Facility, which is designed to centralize United's Super Tug operations. United’s IAH Move Team manages over 15 Super Tugs across the airfield, which assist with moving hundreds of aircraft to support flight departures, remote parking areas, and Technical Operations Hangars.

The company says it plans to introduce more than 500 new aircraft into its fleet, and increase the total number of available seats per domestic departure by nearly 30%. United also hopes to reduce carbon emissions per seat and create more unionized jobs by 2026.

"With these new facilities, Ground Service Equipment Maintenance Facility and the Technical Operations Training Center, we are enhancing our ability to maintain a world-class fleet while empowering our employees with cutting-edge tools and training,” Phil Griffith, United's Vice President of Airport Operations, said in a news release. “This investment reflects our long-term vision for Houston as a critical hub for United's operations and our commitment to sustainability, efficiency, and growth."

UH study uncovers sustainable farming methods for hemp production

growth plan

A new University of Houston study of hemp microbes can potentially assist scientists in creating special mixtures of microbes to make hemp plants produce more CBD or have better-quality fibers.

The study, led by Abdul Latif Khan, an assistant professor of biotechnology at the Cullen College of Engineering Technology Division, was published in the journal Scientific Reports from the Nature Publishing Group. The team also included Venkatesh Balan, UH associate professor of biotechnology at the Cullen College of Engineering Technology Division; Aruna Weerasooriya, professor of medicinal plants at Prairie View A&M University; and Ram Ray, professor of agronomy at Prairie View A&M University.

The study examined microbiomes living in and around the roots (rhizosphere) and on the leaves (phyllosphere) of four types of hemp plants. The team at UH compared how these microorganisms differ between hemp grown for fiber and hemp grown for CBD production.

“In hemp, the microbiome is important in terms of optimizing the production of CBD and enhancing the quality of fiber,” Khan said in a news release. “This work explains how different genotypes of hemp harbor microbial communities to live inside and contribute to such processes. We showed how different types of hemp plants have their own special groups of tiny living microbes that help the plants grow and stay healthy.”

The study indicates that hemp cultivation can be improved by better understanding these distinct microbial communities, which impact growth, nutrient absorption, stress resilience, synthesis and more. This could help decrease the need for chemical inputs and allow growers to use more sustainable agricultural practices.

“Understanding these microorganisms can also lead to more sustainable farming methods, using nature to boost plant growth instead of relying heavily on chemicals,” Ahmad, the paper’s first author and doctoral student of Khan’s, said the news release.

Other findings in the study included higher fungal diversity in leaves and stems, higher bacterial diversity in roots and soil, and differing microbiome diversity. According to UH, CBD-rich varieties are currently in high demand for pharmaceutical products, and fiber-rich varieties are used in industrial applications like textiles.