Meet the female health tech founders being accelerated by Ignite Healthcare this year. Photo courtesy of Ignite

Last month, a Houston organization dedicated to supporting female founders in health care kicked off its 2023 accelerator with cohort participants from across the country.

Ignite Healthcare Network, based in Houston, is a nonprofit founded on the mission of supporting women in health care. Ignite established its 12-week accelerator program to help advance and connect female health tech founders with mentors and potential clients as their startups scale.

"We have 19 founders doing great work, and we have them matched with three to four advisors helping to mentor them," Ayse McCracken, founder and board chair of Ignite tells InnovationMap. "We also have a virtual learning program, which is new this year, and we have two sessions of those a week."

The programming is curated to tackle the health tech industry's biggest topics and provide advice for a small group of engaged startups, McCracken explains. In its fifth year now, the program has a large group of partners that are involved.

"We've had 91 companies come through our program in the last fours years," McCracken says. "They've raised over $550 million."

The cohort concludes on November 9 with the Fire Pitch Competition at the Ion, where a handful of finalists — selected by Ignite's team of mentors — will present to win the top award.

This year's cohort includes:

  • Somer Baburek, CEO and co-founder of Hera Biotech
  • Sue Carr, president and founder of CarrTech Corp
  • Suchismita Acharya, CEO, chief strategy officer, and co-founder of AyuVis
  • Asma Mirza, CEO and founder of Steradian Technologies
  • J’Vanay Santos, CEO and founder of MyLÚA Health
  • Maureen Brown, CEO and co-founder of Mosie Baby
  • Elizabeth Friedman, president and founder of Safen Medical Products
  • Meghan Doyle, CEO and co-founder of Partum Health
  • Marina Tarasova, COO and co-founder of Paloma Health
  • Melissa Bowley, CEO and founder of Flourish Care
  • Molly Hegarty, CEO and founder of Junum
  • Patty Lee, CEO and co-founder of Orbit Health
  • Piyush Modak, Vice President of R&D and co-founder of EndoMedix
  • Debbie Chen, CEO and founder of Hydrostasis
  • Rachael Grimaldi, CEO and co-founder of CardMedic
  • Rachna Dhamija, CEO of Ejenta
  • Carolyn Treviño Jenkins, CEO and co-founder of We Are Here
  • Lyn Markey, CEO and co-founder of XTremedy
  • Camille O’Malley, CTO and co-founder of XTremedy
Last year, Joanna Nathan, CEO of Houston-based Prana Thoracic, won the top award for her company.
These three health tech startups are moving on in TMCi's accelerator program. Photo courtesy of TMC

TMC names 3 startups to Houston health tech accelerator

onboarding tech

Thee Texas Medical Center named three companies to its accelerator program. The health tech startups will join the program and make key connections to grow their technology and business.

Texas Medical Center Innovation announced this year's cohort for the TMC Innovation Accelerator for HealthTech. The companies attended TMCi's boot camp earlier this year before being named to the cohort.

“It is always exciting to introduce a new group of talented entrepreneurs into our community,” says Tom Luby, director of TMC Innovation, in a news release. “Each with their own goals, and at their individual stage, we’ll work closely together to help them learn, grow and navigate this rich clinical landscape. We are honored to be the bridge between these innovators and the world’s largest medical city.”

The selected startups include Oxford, United Kingdom-based CardMedic, which joins the program by way of TMC's UK BioBridge, an international partnership established to bring cutting-edge health tech startups to the United States by way of Houston. The company's technology is a digital "One Stop Communication Shop" — an extensive library of pre-written scripts that help staff and patients communicate across any barrier, including language, deafness, cognitive impairment, or disability.

“The opportunity to connect with Texas Medical Center member institutions, understand their problem domain, and in what ways that may differ from the United Kingdom is invaluable. We are really excited about learning from the expert team of strategic advisors at the TMCi Accelerator about areas we needed to focus on to grow our company in the United States,” says Rachael Grimaldi, co-founder and CEO of CardMedic.

Chicago-based CareAdvisors, which helps hospitals and clinical social workers connect patients to the best resources and benefits to address social care needs, also joins the TMCi accelerator. The company's technology, the Social Care Automation tool, enables hospitals to generate revenue from preventive health programs and helps health plans reduce overutilization by putting the focus on preventive care.

Roboligent, based in Austin, designs and manufactures robotic and automated physical therapy exercises for patients with upper and lowers limb musculoskeletal issues. This robotic-assisted rehab help promotes recovery while increasing rehab centers’ operational efficiency.

“Introducing a new and innovative product, especially in the medical device field, is a thorough and collaborative effort,” says Bongsu Kim, founder and CEO of Roboligent, in a news release. “TMC’s HealthTech Accelerator is the perfect place to make connections with experts and stakeholders to help guide us in reaching our next milestone.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston wearable biosensing company closes $13M pre-IPO round

fresh funding

Wellysis, a Seoul, South Korea-headquartered wearable biosensing company with its U.S. subsidiary based in Houston, has closed a $13.5 million pre-IPO funding round and plans to expand its Texas operations.

The round was led by Korea Investment Partners, Kyobo Life Insurance, Kyobo Securities, Kolon Investment and a co-general partner fund backed by SBI Investment and Samsung Securities, according to a news release.

Wellysis reports that the latest round brings its total capital raised to about $30 million. The company is working toward a Korea Securities Dealers Automated Quotations listing in Q4 2026 or Q1 2027.

Wellysis is known for its continuous ECG/EKG monitor with AI reporting. Its lightweight and waterproof S-Patch cardiac monitor is designed for extended testing periods of up to 14 days on a single battery charge.

The company says that the funding will go toward commercializing the next generation of the S-Patch, known as the S-Patch MX, which will be able to capture more than 30 biometric signals, including ECG, temperature and body composition.

Wellysis also reports that it will use the funding to expand its Houston-based operations, specifically in its commercial, clinical and customer success teams.

Additionally, the company plans to accelerate the product development of two other biometric products:

  • CardioAI, an AI-powered diagnostic software platform designed to support clinical interpretation, workflow efficiency and scalable cardiac analysis
  • BioArmour, a non-medical biometric monitoring solution for the sports, public safety and defense sectors

“This pre-IPO round validates both our technology and our readiness to scale globally,” Young Juhn, CEO of Wellysis, said in the release. “With FDA-cleared solutions, expanding U.S. operations, and a strong AI roadmap, Wellysis is positioned to redefine how cardiac data is captured, interpreted, and acted upon across healthcare systems worldwide.”

Wellysis was founded in 2019 as a spinoff of Samsung. Its S-Patch runs off of a Samsung Smart Health Processor. The company's U.S. subsidiary, Wellysis USA Inc., was established in Houston in 2023 and was a resident of JLABS@TMC.

Elon Musk vows to launch solar-powered data centers in space

To Outer Space

Elon Musk vowed this week to upend another industry just as he did with cars and rockets — and once again he's taking on long odds.

The world's richest man said he wants to put as many as a million satellites into orbit to form vast, solar-powered data centers in space — a move to allow expanded use of artificial intelligence and chatbots without triggering blackouts and sending utility bills soaring.

To finance that effort, Musk combined SpaceX with his AI business on Monday, February 2, and plans a big initial public offering of the combined company.

“Space-based AI is obviously the only way to scale,” Musk wrote on SpaceX’s website, adding about his solar ambitions, “It’s always sunny in space!”

But scientists and industry experts say even Musk — who outsmarted Detroit to turn Tesla into the world’s most valuable automaker — faces formidable technical, financial and environmental obstacles.

Feeling the heat

Capturing the sun’s energy from space to run chatbots and other AI tools would ease pressure on power grids and cut demand for sprawling computing warehouses that are consuming farms and forests and vast amounts of water to cool.

But space presents its own set of problems.

Data centers generate enormous heat. Space seems to offer a solution because it is cold. But it is also a vacuum, trapping heat inside objects in the same way that a Thermos keeps coffee hot using double walls with no air between them.

“An uncooled computer chip in space would overheat and melt much faster than one on Earth,” said Josep Jornet, a computer and electrical engineering professor at Northeastern University.

One fix is to build giant radiator panels that glow in infrared light to push the heat “out into the dark void,” says Jornet, noting that the technology has worked on a small scale, including on the International Space Station. But for Musk's data centers, he says, it would require an array of “massive, fragile structures that have never been built before.”

Floating debris

Then there is space junk.

A single malfunctioning satellite breaking down or losing orbit could trigger a cascade of collisions, potentially disrupting emergency communications, weather forecasting and other services.

Musk noted in a recent regulatory filing that he has had only one “low-velocity debris generating event" in seven years running Starlink, his satellite communications network. Starlink has operated about 10,000 satellites — but that's a fraction of the million or so he now plans to put in space.

“We could reach a tipping point where the chance of collision is going to be too great," said University at Buffalo's John Crassidis, a former NASA engineer. “And these objects are going fast -- 17,500 miles per hour. There could be very violent collisions."

No repair crews

Even without collisions, satellites fail, chips degrade, parts break.

Special GPU graphics chips used by AI companies, for instance, can become damaged and need to be replaced.

“On Earth, what you would do is send someone down to the data center," said Baiju Bhatt, CEO of Aetherflux, a space-based solar energy company. "You replace the server, you replace the GPU, you’d do some surgery on that thing and you’d slide it back in.”

But no such repair crew exists in orbit, and those GPUs in space could get damaged due to their exposure to high-energy particles from the sun.

Bhatt says one workaround is to overprovision the satellite with extra chips to replace the ones that fail. But that’s an expensive proposition given they are likely to cost tens of thousands of dollars each, and current Starlink satellites only have a lifespan of about five years.

Competition — and leverage

Musk is not alone trying to solve these problems.

A company in Redmond, Washington, called Starcloud, launched a satellite in November carrying a single Nvidia-made AI computer chip to test out how it would fare in space. Google is exploring orbital data centers in a venture it calls Project Suncatcher. And Jeff Bezos’ Blue Origin announced plans in January for a constellation of more than 5,000 satellites to start launching late next year, though its focus has been more on communications than AI.

Still, Musk has an edge: He's got rockets.

Starcloud had to use one of his Falcon rockets to put its chip in space last year. Aetherflux plans to send a set of chips it calls a Galactic Brain to space on a SpaceX rocket later this year. And Google may also need to turn to Musk to get its first two planned prototype satellites off the ground by early next year.

Pierre Lionnet, a research director at the trade association Eurospace, says Musk routinely charges rivals far more than he charges himself —- as much as $20,000 per kilo of payload versus $2,000 internally.

He said Musk’s announcements this week signal that he plans to use that advantage to win this new space race.

“When he says we are going to put these data centers in space, it’s a way of telling the others we will keep these low launch costs for myself,” said Lionnet. “It’s a kind of powerplay.”

Johnson Space Center and UT partner to expand research, workforce development

onward and upward

NASA’s Johnson Space Center in Houston has forged a partnership with the University of Texas System to expand collaboration on research, workforce development and education that supports space exploration and national security.

“It’s an exciting time for the UT System and NASA to come together in new ways because Texas is at the epicenter of America’s space future. It’s an area where America is dominant, and we are committed as a university system to maintaining and growing that dominance,” Dr. John Zerwas, chancellor of the UT System, said in a news release.

Vanessa Wyche, director of Johnson Space Center, added that the partnership with the UT System “will enable us to meet our nation’s exploration goals and advance the future of space exploration.”

The news release noted that UT Health Houston and the UT Medical Branch in Galveston already collaborate with NASA. The UT Medical Branch’s aerospace medicine residency program and UT Health Houston’s space medicine program train NASA astronauts.

“We’re living through a unique moment where aerospace innovation, national security, economic transformation, and scientific discovery are converging like never before in Texas," Zerwas said. “UT institutions are uniquely positioned to partner with NASA in building a stronger and safer Texas.”

Zerwas became chancellor of the UT System in 2025. He joined the system in 2019 as executive vice chancellor for health affairs. Zerwas represented northwestern Ford Bend County in the Texas House from 2007 to 2019.

In 1996, he co-founded a Houston-area medical practice that became part of US Anesthesia Partners in 2012. He remained active in the practice until joining the UT System. Zerwas was chief medical officer of the Memorial Hermann Hospital System from 2003 to 2008 and was its chief physician integration officer until 2009.

Zerwas, a 1973 graduate of the Houston area’s Bellaire High School, is an alumnus of the University of Houston and Baylor College of Medicine.