Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Getty Images

A study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

DivInc wrapped its inaugural Clean Energy Tech accelerator this month. Photo via LinkedIn

Houston energy accelerator celebrates inaugural class of diverse startup founders

showcased

DivInc, a Texas-based accelerator focused on uplifting people of color and women founders, recently concluded their inaugural clean energy cohort, catapulting several early-stage companies to major milestones.

The 12-week intensive Clean Energy Tech accelerator program sponsored by Chevron and Microsoft instructed seven clean energy startup founders at the Ion, through a variety of workshops, mentor sessions, and deep dives with VC professionals. DivInc also gave each startup a non-dilutive $10,000 grant to use during the course of the program.

Cherise Luter, marketing director at DivInc, said the Austin-based development program decided to expand from its previous accelerators — Women in Tech and Sports Tech — into clean energy because it is a newer industry with ample potential.

“Clean energy is an emerging space where founders like ours, women and POC founders, can really get in on the ground floor in a great way so that they are building as well as benefiting from this new space,” Luter tells EnergyCapital.

Luter said corporate partners Chevron and Microsoft were similarly on board with prioritizing diversity in the clean energy sector and together they agreed Houston would be the best place to headquarter the accelerator for its expansive resources, particularly VCs.

“Houston, as the energy capital, the resources, connections, and network are here, and we have found that those are the things that are most important for our founders to be able to really take their companies to the next level,” Luter explains.

The participating startups’ focuses ranged from innovations in solar power to electric vehicle charging stations, but these corporations were all united in aiding the clean energy transition.

“It’s so interesting with this particular cohort, how they are really merging the human part of clean energy – how it’s contributing to a better life for people–with a better situation for our environment and our climate,” Luter says.

The inaugural cohort included one to two entrepreneurs from the following companies:

  • BlackCurrant Inc., based in Chicago, is transforming the hydrogen industry by simplifying OTC transactions and offering a comprehensive platform for businesses to seamlessly obtain equipment, fuel, and services essential for hydrogen adoption.
  • Owanga Solar, founded by two Emory University law students in Georgia, delivers sustainable and affordable solar energy solutions to households and businesses in the Democratic Republic of Congo.
  • Maryland-based Pirl Technology Inc. is building next generation electric vehicle charging stations.
  • Houston-based Quantum New Energy has a software platform, called EnerWisely, that helps those who own assets that reduce carbon emissions, like solar panels, generate high quality, verifiable carbon credits that don’t green wash.
  • SOL roofs, founded by Austinite Daniel Duerto, is creating the next generation of solar roofs through innovating existing technologies.
  • WIP International Services LLC, a Houston-based company, is addressing drinking water scarcity with its atmospheric water generators, which produce fresh drinking water from the humidity in the air.

Tracy Jackson, CEO of WIP International Services LLC, announced on the accelerator’s demo day her Houston-based company that produces atmospheric water generators, which transform humid air into clean drinking water, contracted with several schools in El Salvador for a pilot program to send 40 of their smaller models.

“We’re going to continue on our path and we’re looking forward to signing more international contracts and look forward to having any local opportunities that we can develop as well,” Jackson says.

Since the program ended, Luter shared WIP has also secured a “major international contract in Mexico.”

Luter also shared that accelerator participant Quantum New Energy, a climatech Houston-based company, has pre-launched expansion of EnerWisely, their software that tracks carbon credits, for commercial facilities.

Luter says DivInc plans to eventually host another cohort of their clean energy accelerator and they are continuing to accept applications from founders on a rolling basis.

------

This article originally ran on EnergyCapital.

Greentown Labs has announced its inaugural batch of members for its new Houston location. Photo via greentownlabs.com

New-to-Houston cleantech incubator names inaugural members

to the lab

A Somerville, Massachusetts-based cleantech accelerator has announced the 16 startups that will be a part of its new Houston incubator program.

Greentown Labs named the companies in the cohort this week just a few weeks after announcing the location of its new lab and workspace. The 40,000-square-foot space is being renovated from a former grocery store and is expected to open next spring.

"These early-access members are innovating across the key greenhouse gas-emitting sectors—including electricity, manufacturing, buildings, and more—and their solutions are helping create a sustainable future for all," reads a blog post on the company's website.

Here are Greentown Houston's inaugural members:

  • Austin-based Applied Bioplastics is creating affordable plastic alternatives with plant matter to help reduce consumers' carbon footprint.
  • Black Mountain Metals, based in Fort Worth, is focused on nickel and copper mining for lithium-ion battery cathodes.
  • Carbon Free Technologies created a home battery system that can store electricity when rates are low.
  • ClearValue uses pure hydrogen and oxygen as a sustainable power system.
  • e^2: equitable energy is described as a "multi-brand cause-marketing platform" that connects consumers to sustainable energy solutions through promotion and incentivization.
  • Eclipse Solar Projects builds, owns, and operates solar projects across the country through new technology and battery storage operations.
  • Houston-based Ennuity Holdings allows users to have access to solar energy subscription service — even though they don't have access to installing panels themselves.
  • Excipicio Energy , based in Houston, is taking renewable energy offshore by integrating wind, wave, and more into a single floating platform.
  • Houston-based Quantum New Energy platform, EnerWisely, helps people and companies make smart energy choices "to maximize their monetary savings and reduce their environmental impacts."
  • Spring, Texas-based Renu Energy is creating sustainable change through waste recycling and community engagement, according to its website.
  • REVOLUTION Turbine Technologies, based in North Carolina, is working on a power generator that can be used in the offshore setting.
  • Houston-based Revterra is developing a long-duration energy storage solution.
  • Skylark, based in Houston, created a "broadband last-mile radio systems for internet service providers, with a focus on 40 million unserved Americans in rural markets."
  • Austin-based swytchX is working on a cloud-based SaaS solution that uses blockchain technology to optimize renewable energy delivery.
  • Houston-based Varea Energy, a software company, uses data to build business models focusing on eliminating barriers to green initiatives.
  • California-based Veloce Energy develops faster electric vehicle charging infrastructure.
Companies interested in joining the incubator should reach out to Greentown Labs online.

The 16 startups will move into the Greentown space when it opens in the spring. Image via greentownlabs.com

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston energy tech startup Molecule closes series B funding round

Big Bang

Houston-based energy trading risk management (ETRM) software company Molecule has completed a successful series B round for an undisclosed amount, according to a July 16 release from the company.

The raise was led by Sundance Growth, a California-based software growth equity firm.

Sameer Soleja, founder and CEO of Molecule, said in the release that the funding will allow the company to "double down on product innovation, grow our team, and reach even more markets."

Molecule closed a $12 million Series A round in 2021, led by Houston-based Mercury Fund, and has since seen significant growth. The company, which was founded in 2012, has expanded its customer base across the U.S., U.K., Europe, Canada and South America, according to the release.

Additionally, it has launched two new modules of its software platform. Its Hive module, which debuted in 2022, enables clients to manage their energy portfolio and renewable credits together in one scalable platform. It also introduced Elektra, an add-on for the power market to its platform, which allows for complex power market trading.

"Four years ago, we committed to becoming the leading platform for energy trading," Soleja said in the release. "Today, our customers are managing complex power and renewable portfolios across multiple jurisdictions, all within Molecule.”

Molecule is also known for its data-as-a-lake platform, Bigbang, which enables energy ETRM and commodities trading and risk management (CTRM) customers to automatically import trade data from Molecule and then merge it with various sources to conduct queries and analysis.

“Molecule is doing something very few companies in energy tech have done: combining mission-critical depth with cloud-native, scalable technology,” Christian Stewart, Sundance Growth managing director, added in the statement.

“Sameer and his team have built a platform that’s not only powerful, but user-friendly—a rare combination in enterprise software. We’re thrilled to partner with Molecule as they continue to grow and transform the energy trading and risk management market.”

---

This article originally appeared on EnergyCapitalHTX.com.

Rice University professor earns $550k NSF award for wearable imaging tech​

science supported

Another Houston scientist has won one of the highly competitive National Science Foundation (NSF) CAREER Awards.

Lei Li, an assistant professor of electrical and computer engineering at Rice University, has received a $550,000, five-year grant to develop wearable, hospital-grade medical imaging technology capable of visualizing deep tissue function in real-time, according to the NSF. The CAREER grants are given to "early career faculty members who demonstrate the potential to serve as academic models and leaders in research and education."

“This is about giving people access to powerful diagnostic tools that were once confined to hospitals,” Li said in a news release from Rice. “If we can make imaging affordable, wearable and continuous, we can catch disease earlier and treat it more effectively.”

Li’s research focuses on photoacoustic imaging, which merges light and sound to produce high-resolution images of structures deep inside the body. It relies on pulses of laser light that are absorbed by tissue, leading to a rapid temperature rise. During this process, the heat causes the tissue to expand by a fraction, generating ultrasound waves that travel back to the surface and are detected and converted into an image. The process is known to yield more detailed images without dyes or contrast agents used in some traditional ultrasounds.

However, current photoacoustic systems tend to use a variety of sensors, making them bulky, expensive and impractical. Li and his team are taking a different approach.

Instead of using hundreds of separate sensors, Li and his researchers are developing a method that allows a single sensor to capture the same information via a specially designed encoder. The encoder assigns a unique spatiotemporal signature to each incoming sound wave. A reconstruction algorithm then interprets and decodes the signals.

These advances have the potential to lower the size, cost and power consumption of imaging systems. The researchers believe the device could be used in telemedicine, remote diagnostics and real-time disease monitoring. Li’s lab will also collaborate with clinicians to explore how the miniaturized technology could help monitor cancer treatment and other conditions.

“Reducing the number of detection channels from hundreds to one could shrink these devices from bench-top systems into compact, energy-efficient wearables,” Li said in the release. “That opens the door to continuous health monitoring in daily life—not just in hospitals.”

Amanda Marciel, the William Marsh Rice Trustee Chair of chemical and biomolecular engineering and an assistant professor at Rice, received an NSF CAREER Award last year. Read more here.

Houston Spaceport launches $12M expansion for leading space tech co.

to the moon

Houston will get one step closer to the moon, as the Houston Spaceport at Ellington Airport (EFD) has announced an expansion of the lease for Intuitive Machines, the Houston space tech leader dedicated to furthering lunar exploration.

On July 15, the City of Houston announced passage of Amendment 1, which would add three acres of commercial space for Intuitive Machines at the spaceport and a $12 million infrastructure expansion. Approved by the city council and Mayor John Whitmire, the expansion will include new production, testing and support facilities. The amendment extends the current lease for Intuitive Machines from 20 years to 25 years.

"I want to shout out to Intuitive Machines about everything they’re doing at the Houston Spaceport. It’s exciting to see them expand. We’re starting to reach a critical mass out there — more and more aerospace companies want to be at the Spaceport because that’s where innovation is happening,” said Fred Flinkinger, who represents District E on the Houston City Council. “It’s a great sign of momentum, and we’re proud to have them here in Houston."

Intuitive Machines was the first commercial tenant for the Houston Spaceport when it moved into the facility in August 2016. Founded by Stephen Altemus, Kam Ghaffarian, and Tim Crain in 2013, the company holds three contracts with the National Aeronautics and Space Administration (NASA) to deliver payloads to the lunar surface. In 2023, the company opened its doors in Houston with a 105,572-square-foot Lunar Production and Operations Center that contains research and development labs, clean rooms, mission control centers, and a spacecraft assembly floor.


Intuitive Machines landed Odysseus on the moon in February 2024, the first privately owned soft lunar landing ever and the first soft landing since 1972.

The Houston Spaceport is owned and operated by the City of Houston and Houston Airports, who have an eye of keeping the city a prime name in space exploration. As "Houston" was the first word spoken on the moon when Apollo 11 landed in 1969, lunar exploration in particular has a soft place in the heart of the metropolis formerly known as Space City.

“This agreement reinforces Houston’s leadership in space innovation,” said Jim Szczesniak, director of aviation for Houston Airports. “We’re building infrastructure and supporting the next era of lunar and deep space exploration, right here at Houston Spaceport. This partnership represents the forward-thinking development that fuels job creation and drives long-term economic growth.”