From a new cancer-detecting device to a digital resource for childhood cancer survivors, here are some cancer-fighting innovations from Houston. Getty Images

Not all heroes wear capes. Some wear lab coats. Almost daily, it seems there's a new breakthrough or discovery for life-saving innovations.

These three cancer-related innovations are coming out of Houston, and they are ones to watch.

University of Houston's biosensor for prostate cancer reoccurrence

Dmitri Litvinov, professor of electrical and computer engineering at the University of Houston, is on a mission to bring an effective, low-cost test for prostate cancer recurrence to doctor's offices everywhere. Photo via uh.edu

Researchers from the University of Houston have teamed up with their colleagues at the University of Pennsylvania to try to get a biosensor that can detect the recurrence of prostate cancer into the doctor's office.

The research is funded by a $399,988 grant from the National Science Foundation and led by Dmitri Litvinov, principal investigator and professor of electrical and computer engineering at UH.

"Such tests exist in clinical laboratories, but there remains a critical need for inexpensive, versatile and high-sensitivity diagnostic platforms which can bring the performance to the point of care or doctor's office," says Litvinov in a release.

The biosensor platform would be less than $3 per test — an alluring fact for patients and health care providers — and would function more or less like a pregnancy test, but without a simple positive or negative response. Rather, the test can assess how much prostate-specific antigen is in a patient's blood

"Our technology has potential to help improve survival rates with more accessible, affordable and easier testing," Litvinov says.

Rice University's study that points to new cancer-fighting drug

José Onuchic co-authored a study that's opening doors for a new approach in cancer drug development. Photo by Jeff Fitlow/Rice University

A recent study in the Proceedings of the National Academy of Sciences revealed that a cancer-linked version of the protein mitoNEET can shut the gateways of mitochondria cells that supply chemical energy.

José Onuchic, a physicist and co-director of Rice University's Center for Theoretical Biological Physics, co-authored the paper and noted that the gateways, called voltage-dependent anion channels, or VDACs, typically open and shut to allow the passage of metabolites and other small molecules between mitochondria and the rest of the cell.

"The VDAC channel transports all types of metabolites between the cytosol and the mitochondria," says Onuchic in a release. "Dysfunction of this channel is involved in many diseases including cancer and fatty liver disease."

Co-author Patricia Jennings, a structural biologist at UCSD, explains in the news release.

"The discovery that mitoNEET directly gates VDAC, the major porin of mitochondria, as well as the accompanying structural analysis and predictions for this interaction, affords a new platform for investigations of methods to induce cancer cells to commit cell suicide, or apoptosis/ferroptosis, in a cancer-specific, regulated process," she writes.

The study opens doors for a new approach to cancer-treating drugs.

"Fine-tuning a drug that specifically alters the redox-state of interaction between VDAC and mitoNEET would allow the development of new weapons to battle multiple cancers," Onuchic says.

Baylor College of Medicine's digital tool for childhood cancer survivors

Baylor College of Medicine has created an online resource for childhood cancer survivors. Photo via bcm.edu

Childhood cancer survivors face a lifetime of obstacles to overcome, and Baylor College of Medicine and Texas Children's Cancer Center have developed a resource to help these patients have the best quality of life in remission.

Passport for Care, a free online resource, features a "survivorship care plan" for the patient, his or her doctor, and family members. The program's new Screenings Recommendations Generator tool can provide a childhood cancer survivor with potential late effects and how to manage their care.

"This tool is especially helpful for patients who have moved on to other doctors who they did not see as a child and who might not be familiar with their particular treatment and the subsequent health risks," says Dr. David Poplack, founder of the Passport for Care and associate director of the Texas Children's Cancer and Hematology Centers, in a news release. "It helps physicians understand their patient's history and know how to address future health problems."

Over 37,000 cancer survivors are using Passport for Care at 138 clinics around the world. Additionally, patients can also register through the Screenings Recommendations Generator.

Passport for Care is funded by the Cancer Prevention & Research Institute of Texas, as well as through a grant from Hyundai Hope on Wheels.

"We created Passport for Care with the goal of empowering survivors in their healthcare decisions," Poplack says. "Their care doesn't end when cancer treatment is over. Survivorship care is a lifelong journey."

A new prostate cancer treatment at Houston Methodist is enhancing the system's patient care. Getty Images

New technology gives this Houston hospital a competitive edge

Guest column

As the top ranking hospital in Texas and one of the biggest employers in Houston, Houston Methodist Hospital is poised to treat the thousands of Texan men who will be diagnosed with prostate cancer this year.

Building on its legacy of delivering advanced cancer treatment, the healthcare giant is one of the first hospitals in the United States to offer men a benign approach to treating localized prostate cancer, using high intensity focused ultrasound, or HIFU. HIFU is a minimally invasive procedure that allows patients to maintain their quality of life with potentially fewer side effects.

Changing the standard of care

For decades, men diagnosed with prostate cancer have had three ways to manage their disease. The first is watchful waiting or active surveillance. Prostate cancer is often slow growing and may not impact the patient during his lifetime. Despite reassuring data in large randomized trials, some patients are still uncomfortable with a diagnosis of cancer and prefer treatment.

On the other end of the spectrum is the complete treatment of the prostate, which involves either surgically removing the entire organ (radical prostatectomy) or radiation, which can last up to eight weeks, with five rounds of treatment per week. Both treatments are known to cause long term erectile dysfunction and incontinence.

But for men diagnosed with localized prostate cancer, this new HIFU treatment bridges the gap between these three approaches. Unlike diagnostic ultrasound, which people are more familiar with, HIFU uses high-frequency sound waves to heat up and burn cancerous tissue, causing cell death. Think of holding a magnifying glass above a leaf on a sunny day. The sun's rays shine through the lens and cause the leaf to burn.

New and improved

Courtesy of Houston Methodist

With HIFU, the urologist destroys the cancerous tissue without damaging other surrounding structures, which include nerves, blood vessels and muscle tissue. While HIFU has only been able to treat the entire prostate or large areas, Houston Methodist has a new technology, called the Focal One, that can zero in on specific areas to treat. The doctor can draw precise contours around the diseased tissue, destroy only that portion of the prostate and minimize any damage to surrounding tissue. This further decreases the possibility of incontinence and erectile dysfunction.

A competitive edge

Focal One gives Houston Methodist Hospital urologists the ability to plum the depths of something until recently considered heresy. The possibility of focal therapy to ablate only the diseased portion of the prostate is similar to performing a lumpectomy to remove only the diseased tissue of the breast in breast cancer. And focal therapy still leaves doctors with the options of radical surgery or radiation, should the cancer return. They don't necessarily burn any bridges.

Although focal HIFU treatment is available around the world for localized prostate cancer and studies in Europe have demonstrated its safety and efficacy, there are no long term follow up data in the U.S. at this time. So far, treatment complication rates in HIFU have shown to be as good as or better than other therapies. But urologic surgeons in the US generally need 10 years of data to establish focal therapy as a standard treatment, which is why it is important for cancer centers that embrace HIFU to enroll patients in an ongoing registry trial.


------

Brian Miles, M.D, is a practicing urologist and professor of urology at the Institute for Academic Medicine at Houston Methodist.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Waymo self-driving robotaxis will launch in Houston in 2026

Coming Soon

Houston just cleared a major lane to the future. Waymo has announced the official launch of its self-driving robotaxi service in the Bayou City, beginning with employee-only operations this fall ahead of a public launch in early 2026.

The full rollout will include three Texas cities, Houston, Dallas, and San Antonio, along with Miami and Orlando, Florida. Currently, the company operates in the San Francisco Bay Area, Phoenix, and Los Angeles, with service available in Austin and Atlanta through Uber.

Before letting its technology loose on a city, Waymo first tests the routes with human drivers. Once each locale is mapped, the cars can begin driving independently. Unique situations are flagged by specialists, and engineers evaluate performance in virtual replicas of each city.

“Waymo’s quickly entering a number of new cities in the U.S. and around the world, and our approach to every new city is consistent,” explained the announcement. “We compare our driving performance against a proven baseline to validate the performance of the Waymo Driver and identify any unique local characteristics.”

The launch puts Waymo ahead of Tesla. Elon Musk’s Austin-based carmaker has made a lot of hullabaloo about autonomy being the future of the company, but has yet to launch its service on a wide scale.

Waymo started testing San Antonio’s roadways in May as part of a multi-city “road trip,” which also included Houston. The company says its measured approach to launches helps alleviate local concern over safety and other issues.

“The future of transportation is accelerating, and we are driving it forward with a commitment to quality and safety,” Waymo wrote. “Our rigorous process of continuous iteration, validation, and local engagement ensures that we put communities first as we expand.”

---

This article originally appeared on CultureMap.com.

Shipley Donuts launches AI-powered ordering assistant

fresh tech

Popular Houston-born doughnut chain Shipley Donuts has added a first-of-its-kind AI-powered assistant to its online ordering platform.

The new assistant can create personalized order recommendations based on individual or group preferences, according to a news release from the company. Unlike standard chatbox features, the new assistant makes custom recommendations based on multiple customer factors, including budgetary habits, individual flavor preferences and order size.

"We're not just adding AI for the sake of innovation — we're solving real customer pain points by making ordering more intuitive, personalized and efficient," Kerry Leo, Shipley Vice President of Technology, said in the release.

The system also works for larger events, as it can make individual orders and catering recommendations for corporate events and meetings by suggesting quantities and assortments based on group size, event type and budget.

According to Shipley, nearly 1 in 4 guests have completed orders with the new AI technology since it launched on its website.

“The integration of the AI ordering assistant into our refreshed website represents a significant leap forward in how restaurant brands can leverage technology to enhance the customer experience,” Leo added in the release.

Houston company wins AHA competition for pediatric heart valve design

winner, winner

Houston-based PolyVascular, which develops minimally invasive solutions for children with congenital heart disease, was named the overall winner of the American Heart Association’s annual Health Tech Competition earlier this month.

The company was founded in 2014 by Dr. Henri Justino and Daniel Harrington and was part of TMCi's 2017 medical device cohort. It is developing the first polymer-based transcatheter pulmonary valve designed specifically for young children, allowing for precise sizing and redilation as the child grows while also avoiding degradation. PolyVascular has completed preclinical studies and is working toward regulatory submissions, an early feasibility study and its first-in-human clinical trial thanks to a recent SBIR grant from the National Heart, Lung, and Blood Institute.

With the new AHA honor, PolyVascular will be invited to join the association’s Center for Health Technology & Innovation Innovators’ Network, which connects entrepreneurs, providers and researchers to share and advance innovation in cardiovascular and brain health.

“This is a tremendous honor for PolyVascular—we’re especially proud to bring hope to families and children living with congenital heart defects,” Justino said in a news release. “Our technology—a minimally invasive valve that can be expanded over time to grow with the child—has the potential to dramatically reduce the need for repeated open-heart surgeries.”

The Health Tech Competition is a live forum for health care innovators to present their digital solutions for treating or preventing cardiovascular diseases and stroke.

Finalists from around the world addressed heart failure, hypertension, congenital heart defects and other issues that exist in cardiovascular, brain and metabolic health. Solutions were evaluated on the criteria of validity, scientific rigor and impact.

The judges included Texas-based Dr. Eric D. Peterson, professor of medicine in the division of cardiology at UT Southwestern Medical Center, and Dr. Asif Ali, clinical associate professor of cardiovascular medicine at the University of Texas Medical School in Houston and director at Cena Research Institute.

According to the American Heart Association, nearly half of U.S. adults live with some form of cardiovascular disease or stroke.

“The American Heart Association plays a pivotal role in advancing innovative care pathways, and we’re excited that our solution aligns with its guidelines and mission,” Justino said in a news release. “It’s time these life-changing technologies reach the youngest patients, just as they already do for adults.”