From a new cancer-detecting device to a digital resource for childhood cancer survivors, here are some cancer-fighting innovations from Houston. Getty Images

Not all heroes wear capes. Some wear lab coats. Almost daily, it seems there's a new breakthrough or discovery for life-saving innovations.

These three cancer-related innovations are coming out of Houston, and they are ones to watch.

University of Houston's biosensor for prostate cancer reoccurrence

Dmitri Litvinov, professor of electrical and computer engineering at the University of Houston, is on a mission to bring an effective, low-cost test for prostate cancer recurrence to doctor's offices everywhere. Photo via uh.edu

Researchers from the University of Houston have teamed up with their colleagues at the University of Pennsylvania to try to get a biosensor that can detect the recurrence of prostate cancer into the doctor's office.

The research is funded by a $399,988 grant from the National Science Foundation and led by Dmitri Litvinov, principal investigator and professor of electrical and computer engineering at UH.

"Such tests exist in clinical laboratories, but there remains a critical need for inexpensive, versatile and high-sensitivity diagnostic platforms which can bring the performance to the point of care or doctor's office," says Litvinov in a release.

The biosensor platform would be less than $3 per test — an alluring fact for patients and health care providers — and would function more or less like a pregnancy test, but without a simple positive or negative response. Rather, the test can assess how much prostate-specific antigen is in a patient's blood

"Our technology has potential to help improve survival rates with more accessible, affordable and easier testing," Litvinov says.

Rice University's study that points to new cancer-fighting drug

José Onuchic co-authored a study that's opening doors for a new approach in cancer drug development. Photo by Jeff Fitlow/Rice University

A recent study in the Proceedings of the National Academy of Sciences revealed that a cancer-linked version of the protein mitoNEET can shut the gateways of mitochondria cells that supply chemical energy.

José Onuchic, a physicist and co-director of Rice University's Center for Theoretical Biological Physics, co-authored the paper and noted that the gateways, called voltage-dependent anion channels, or VDACs, typically open and shut to allow the passage of metabolites and other small molecules between mitochondria and the rest of the cell.

"The VDAC channel transports all types of metabolites between the cytosol and the mitochondria," says Onuchic in a release. "Dysfunction of this channel is involved in many diseases including cancer and fatty liver disease."

Co-author Patricia Jennings, a structural biologist at UCSD, explains in the news release.

"The discovery that mitoNEET directly gates VDAC, the major porin of mitochondria, as well as the accompanying structural analysis and predictions for this interaction, affords a new platform for investigations of methods to induce cancer cells to commit cell suicide, or apoptosis/ferroptosis, in a cancer-specific, regulated process," she writes.

The study opens doors for a new approach to cancer-treating drugs.

"Fine-tuning a drug that specifically alters the redox-state of interaction between VDAC and mitoNEET would allow the development of new weapons to battle multiple cancers," Onuchic says.

Baylor College of Medicine's digital tool for childhood cancer survivors

Baylor College of Medicine has created an online resource for childhood cancer survivors. Photo via bcm.edu

Childhood cancer survivors face a lifetime of obstacles to overcome, and Baylor College of Medicine and Texas Children's Cancer Center have developed a resource to help these patients have the best quality of life in remission.

Passport for Care, a free online resource, features a "survivorship care plan" for the patient, his or her doctor, and family members. The program's new Screenings Recommendations Generator tool can provide a childhood cancer survivor with potential late effects and how to manage their care.

"This tool is especially helpful for patients who have moved on to other doctors who they did not see as a child and who might not be familiar with their particular treatment and the subsequent health risks," says Dr. David Poplack, founder of the Passport for Care and associate director of the Texas Children's Cancer and Hematology Centers, in a news release. "It helps physicians understand their patient's history and know how to address future health problems."

Over 37,000 cancer survivors are using Passport for Care at 138 clinics around the world. Additionally, patients can also register through the Screenings Recommendations Generator.

Passport for Care is funded by the Cancer Prevention & Research Institute of Texas, as well as through a grant from Hyundai Hope on Wheels.

"We created Passport for Care with the goal of empowering survivors in their healthcare decisions," Poplack says. "Their care doesn't end when cancer treatment is over. Survivorship care is a lifelong journey."

A new prostate cancer treatment at Houston Methodist is enhancing the system's patient care. Getty Images

New technology gives this Houston hospital a competitive edge

Guest column

As the top ranking hospital in Texas and one of the biggest employers in Houston, Houston Methodist Hospital is poised to treat the thousands of Texan men who will be diagnosed with prostate cancer this year.

Building on its legacy of delivering advanced cancer treatment, the healthcare giant is one of the first hospitals in the United States to offer men a benign approach to treating localized prostate cancer, using high intensity focused ultrasound, or HIFU. HIFU is a minimally invasive procedure that allows patients to maintain their quality of life with potentially fewer side effects.

Changing the standard of care

For decades, men diagnosed with prostate cancer have had three ways to manage their disease. The first is watchful waiting or active surveillance. Prostate cancer is often slow growing and may not impact the patient during his lifetime. Despite reassuring data in large randomized trials, some patients are still uncomfortable with a diagnosis of cancer and prefer treatment.

On the other end of the spectrum is the complete treatment of the prostate, which involves either surgically removing the entire organ (radical prostatectomy) or radiation, which can last up to eight weeks, with five rounds of treatment per week. Both treatments are known to cause long term erectile dysfunction and incontinence.

But for men diagnosed with localized prostate cancer, this new HIFU treatment bridges the gap between these three approaches. Unlike diagnostic ultrasound, which people are more familiar with, HIFU uses high-frequency sound waves to heat up and burn cancerous tissue, causing cell death. Think of holding a magnifying glass above a leaf on a sunny day. The sun's rays shine through the lens and cause the leaf to burn.

New and improved

Courtesy of Houston Methodist

With HIFU, the urologist destroys the cancerous tissue without damaging other surrounding structures, which include nerves, blood vessels and muscle tissue. While HIFU has only been able to treat the entire prostate or large areas, Houston Methodist has a new technology, called the Focal One, that can zero in on specific areas to treat. The doctor can draw precise contours around the diseased tissue, destroy only that portion of the prostate and minimize any damage to surrounding tissue. This further decreases the possibility of incontinence and erectile dysfunction.

A competitive edge

Focal One gives Houston Methodist Hospital urologists the ability to plum the depths of something until recently considered heresy. The possibility of focal therapy to ablate only the diseased portion of the prostate is similar to performing a lumpectomy to remove only the diseased tissue of the breast in breast cancer. And focal therapy still leaves doctors with the options of radical surgery or radiation, should the cancer return. They don't necessarily burn any bridges.

Although focal HIFU treatment is available around the world for localized prostate cancer and studies in Europe have demonstrated its safety and efficacy, there are no long term follow up data in the U.S. at this time. So far, treatment complication rates in HIFU have shown to be as good as or better than other therapies. But urologic surgeons in the US generally need 10 years of data to establish focal therapy as a standard treatment, which is why it is important for cancer centers that embrace HIFU to enroll patients in an ongoing registry trial.


------

Brian Miles, M.D, is a practicing urologist and professor of urology at the Institute for Academic Medicine at Houston Methodist.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas university to lead new FAA tech center focused on drones

taking flight

The Texas A&M University System will run the Federal Aviation Administration’s new Center for Advanced Aviation Technologies, which will focus on innovations like commercial drones.

“Texas is the perfect place for our new Center for Advanced Aviation Technologies,” U.S. Transportation Secretary Sean Duffy said in a release. “From drones delivering your packages to powered lift technologies like air taxis, we are at the cusp of an aviation revolution. The [center] will ensure we make that dream a reality and unleash American innovation safely.”

U.S. Sen. Ted Cruz, a Texas Republican, included creation of the center in the FAA Reauthorization Act of 2024. The center will consist of an airspace laboratory, flight demonstration zones, and testing corridors.

Texas A&M University-Corpus Christi will lead the initiative, testing unstaffed aircraft systems and other advanced technologies. The Corpus Christi campus houses the Autonomy Research Institute, an FAA-designated test site. The new center will be at Texas A&M University-Fort Worth.

The College Station-based Texas A&M system says the center will “bring together” its 19 institutions, along with partners such as the University of North Texas in Denton and Southern Methodist University in University Park.

According to a Department of Transportation news release, the center will play “a pivotal role” in ensuring the safe operation of advanced aviation technologies in public airspace.

The Department of Transportation says it chose the Texas A&M system to manage the new center because of its:

  • Proximity to major international airports and the FAA’s regional headquarters in Fort Worth
  • Existing infrastructure for testing of advanced aviation technologies
  • Strong academic programs and industry partnerships

“I’m confident this new research and testing center will help the private sector create thousands of high-paying jobs and grow the Texas economy through billions in new investments,” Cruz said.

“This is a significant win for Texas that will impact communities across our state,” the senator added, “and I will continue to pursue policies that create new jobs, and ensure the Lone Star State continues to lead the way in innovation and the manufacturing of emerging aviation technologies.”

Texas Republicans are pushing to move NASA headquarters to Houston

space city

Two federal lawmakers from Texas are spearheading a campaign to relocate NASA’s headquarters from Washington, D.C., to the Johnson Space Center in Houston’s Clear Lake area. Houston faces competition on this front, though, as lawmakers from two other states are also vying for this NASA prize.

With NASA’s headquarters lease in D.C. set to end in 2028, U.S. Sen. Ted Cruz, a Texas Republican, and U.S. Rep. Brian Babin, a Republican whose congressional district includes the Johnson Space Center, recently wrote a letter to President Trump touting the Houston area as a prime location for NASA’s headquarters.

“A central location among NASA’s centers and the geographical center of the United States, Houston offers the ideal location for NASA to return to its core mission of space exploration and to do so at a substantially lower operating cost than in Washington, D.C.,” the letter states.

Cruz is chairman of the Senate Committee on Commerce, Science, and Transportation; and Babin is chairman of the House Committee on Science, Space, and Technology. Both committees deal with NASA matters. Twenty-five other federal lawmakers from Texas, all Republicans, signed the letter.

In the letter, legislators maintain that shifting NASA’s headquarters to the Houston area makes sense because “a seismic disconnect between NASA’s headquarters and its missions has opened the door to bureaucratic micromanagement and an erosion of [NASA] centers’ interdependence.”

Founded in 1961, the $1.5 billion, 1,620-acre Johnson Space Center hosts NASA’s mission control and astronaut training operations. More than 12,000 employees work at the 100-building complex.

According to the state comptroller, the center generates an annual economic impact of $4.7 billion for Texas, and directly and indirectly supports more than 52,000 public and private jobs.

In pitching the Johnson Space Center for NASA’s HQ, the letter points out that Texas is home to more than 2,000 aerospace, aviation, and defense-related companies. Among them are Elon Musk’s SpaceX, based in the newly established South Texas town of Starbase; Axiom Space and Intuitive Machines, both based in Houston; and Firefly Aerospace, based in the Austin suburb of Cedar Park.

The letter also notes the recent creation of the Texas Space Commission, which promotes innovation in the space and commercial aerospace sectors.

Furthermore, the letter cites Houston-area assets for NASA such as:

  • A strong business environment.
  • A low level of state government regulation.
  • A cost of living that’s half of what it is in the D.C. area.

“Moving the NASA headquarters to Texas will create more jobs, save taxpayer dollars, and reinvigorate America’s space agency,” the letter says.

Last November, NASA said it was hunting for about 375,000 to 525,000 square feet of office space in the D.C. area to house the agency’s headquarters workforce. About 2,500 people work at the agency’s main offices. NASA’s announcement set off a scramble among three states to lure the agency’s headquarters.

Aside from officials in Texas, politicians in Florida and Ohio are pressing NASA to move its headquarters to their states. Florida and Ohio both host major NASA facilities.

NASA might take a different approach, however. “NASA is weighing closing its headquarters and scattering responsibilities among the states, a move that has the potential to dilute its coordination and influence in Washington,” Politico reported in March.

Meanwhile, Congressional Delegate Eleanor Holmes Norton, a Democrat who represents D.C., introduced legislation in March that would prohibit relocating a federal agency’s headquarters (including NASA’s) away from the D.C. area without permission from Congress.

“Moving federal agencies is not about saving taxpayer money and will degrade the vital services provided to all Americans across the country,” Norton said in a news release. “In the 1990s, the Bureau of Land Management moved its wildfire staff out West, only to move them back when Congress demanded briefings on new wildfires.”

Houston research breakthrough could pave way for next-gen superconductors

Quantum Breakthrough

A study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.