From a new cancer-detecting device to a digital resource for childhood cancer survivors, here are some cancer-fighting innovations from Houston. Getty Images

Not all heroes wear capes. Some wear lab coats. Almost daily, it seems there's a new breakthrough or discovery for life-saving innovations.

These three cancer-related innovations are coming out of Houston, and they are ones to watch.

University of Houston's biosensor for prostate cancer reoccurrence

Dmitri Litvinov, professor of electrical and computer engineering at the University of Houston, is on a mission to bring an effective, low-cost test for prostate cancer recurrence to doctor's offices everywhere. Photo via uh.edu

Researchers from the University of Houston have teamed up with their colleagues at the University of Pennsylvania to try to get a biosensor that can detect the recurrence of prostate cancer into the doctor's office.

The research is funded by a $399,988 grant from the National Science Foundation and led by Dmitri Litvinov, principal investigator and professor of electrical and computer engineering at UH.

"Such tests exist in clinical laboratories, but there remains a critical need for inexpensive, versatile and high-sensitivity diagnostic platforms which can bring the performance to the point of care or doctor's office," says Litvinov in a release.

The biosensor platform would be less than $3 per test — an alluring fact for patients and health care providers — and would function more or less like a pregnancy test, but without a simple positive or negative response. Rather, the test can assess how much prostate-specific antigen is in a patient's blood

"Our technology has potential to help improve survival rates with more accessible, affordable and easier testing," Litvinov says.

Rice University's study that points to new cancer-fighting drug

José Onuchic co-authored a study that's opening doors for a new approach in cancer drug development. Photo by Jeff Fitlow/Rice University

A recent study in the Proceedings of the National Academy of Sciences revealed that a cancer-linked version of the protein mitoNEET can shut the gateways of mitochondria cells that supply chemical energy.

José Onuchic, a physicist and co-director of Rice University's Center for Theoretical Biological Physics, co-authored the paper and noted that the gateways, called voltage-dependent anion channels, or VDACs, typically open and shut to allow the passage of metabolites and other small molecules between mitochondria and the rest of the cell.

"The VDAC channel transports all types of metabolites between the cytosol and the mitochondria," says Onuchic in a release. "Dysfunction of this channel is involved in many diseases including cancer and fatty liver disease."

Co-author Patricia Jennings, a structural biologist at UCSD, explains in the news release.

"The discovery that mitoNEET directly gates VDAC, the major porin of mitochondria, as well as the accompanying structural analysis and predictions for this interaction, affords a new platform for investigations of methods to induce cancer cells to commit cell suicide, or apoptosis/ferroptosis, in a cancer-specific, regulated process," she writes.

The study opens doors for a new approach to cancer-treating drugs.

"Fine-tuning a drug that specifically alters the redox-state of interaction between VDAC and mitoNEET would allow the development of new weapons to battle multiple cancers," Onuchic says.

Baylor College of Medicine's digital tool for childhood cancer survivors

Baylor College of Medicine has created an online resource for childhood cancer survivors. Photo via bcm.edu

Childhood cancer survivors face a lifetime of obstacles to overcome, and Baylor College of Medicine and Texas Children's Cancer Center have developed a resource to help these patients have the best quality of life in remission.

Passport for Care, a free online resource, features a "survivorship care plan" for the patient, his or her doctor, and family members. The program's new Screenings Recommendations Generator tool can provide a childhood cancer survivor with potential late effects and how to manage their care.

"This tool is especially helpful for patients who have moved on to other doctors who they did not see as a child and who might not be familiar with their particular treatment and the subsequent health risks," says Dr. David Poplack, founder of the Passport for Care and associate director of the Texas Children's Cancer and Hematology Centers, in a news release. "It helps physicians understand their patient's history and know how to address future health problems."

Over 37,000 cancer survivors are using Passport for Care at 138 clinics around the world. Additionally, patients can also register through the Screenings Recommendations Generator.

Passport for Care is funded by the Cancer Prevention & Research Institute of Texas, as well as through a grant from Hyundai Hope on Wheels.

"We created Passport for Care with the goal of empowering survivors in their healthcare decisions," Poplack says. "Their care doesn't end when cancer treatment is over. Survivorship care is a lifelong journey."

A new prostate cancer treatment at Houston Methodist is enhancing the system's patient care. Getty Images

New technology gives this Houston hospital a competitive edge

Guest column

As the top ranking hospital in Texas and one of the biggest employers in Houston, Houston Methodist Hospital is poised to treat the thousands of Texan men who will be diagnosed with prostate cancer this year.

Building on its legacy of delivering advanced cancer treatment, the healthcare giant is one of the first hospitals in the United States to offer men a benign approach to treating localized prostate cancer, using high intensity focused ultrasound, or HIFU. HIFU is a minimally invasive procedure that allows patients to maintain their quality of life with potentially fewer side effects.

Changing the standard of care

For decades, men diagnosed with prostate cancer have had three ways to manage their disease. The first is watchful waiting or active surveillance. Prostate cancer is often slow growing and may not impact the patient during his lifetime. Despite reassuring data in large randomized trials, some patients are still uncomfortable with a diagnosis of cancer and prefer treatment.

On the other end of the spectrum is the complete treatment of the prostate, which involves either surgically removing the entire organ (radical prostatectomy) or radiation, which can last up to eight weeks, with five rounds of treatment per week. Both treatments are known to cause long term erectile dysfunction and incontinence.

But for men diagnosed with localized prostate cancer, this new HIFU treatment bridges the gap between these three approaches. Unlike diagnostic ultrasound, which people are more familiar with, HIFU uses high-frequency sound waves to heat up and burn cancerous tissue, causing cell death. Think of holding a magnifying glass above a leaf on a sunny day. The sun's rays shine through the lens and cause the leaf to burn.

New and improved

Courtesy of Houston Methodist

With HIFU, the urologist destroys the cancerous tissue without damaging other surrounding structures, which include nerves, blood vessels and muscle tissue. While HIFU has only been able to treat the entire prostate or large areas, Houston Methodist has a new technology, called the Focal One, that can zero in on specific areas to treat. The doctor can draw precise contours around the diseased tissue, destroy only that portion of the prostate and minimize any damage to surrounding tissue. This further decreases the possibility of incontinence and erectile dysfunction.

A competitive edge

Focal One gives Houston Methodist Hospital urologists the ability to plum the depths of something until recently considered heresy. The possibility of focal therapy to ablate only the diseased portion of the prostate is similar to performing a lumpectomy to remove only the diseased tissue of the breast in breast cancer. And focal therapy still leaves doctors with the options of radical surgery or radiation, should the cancer return. They don't necessarily burn any bridges.

Although focal HIFU treatment is available around the world for localized prostate cancer and studies in Europe have demonstrated its safety and efficacy, there are no long term follow up data in the U.S. at this time. So far, treatment complication rates in HIFU have shown to be as good as or better than other therapies. But urologic surgeons in the US generally need 10 years of data to establish focal therapy as a standard treatment, which is why it is important for cancer centers that embrace HIFU to enroll patients in an ongoing registry trial.


------

Brian Miles, M.D, is a practicing urologist and professor of urology at the Institute for Academic Medicine at Houston Methodist.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston wearable biosensing company closes $13M pre-IPO round

fresh funding

Wellysis, a Seoul, South Korea-headquartered wearable biosensing company with its U.S. subsidiary based in Houston, has closed a $13.5 million pre-IPO funding round and plans to expand its Texas operations.

The round was led by Korea Investment Partners, Kyobo Life Insurance, Kyobo Securities, Kolon Investment and a co-general partner fund backed by SBI Investment and Samsung Securities, according to a news release.

Wellysis reports that the latest round brings its total capital raised to about $30 million. The company is working toward a Korea Securities Dealers Automated Quotations listing in Q4 2026 or Q1 2027.

Wellysis is known for its continuous ECG/EKG monitor with AI reporting. Its lightweight and waterproof S-Patch cardiac monitor is designed for extended testing periods of up to 14 days on a single battery charge.

The company says that the funding will go toward commercializing the next generation of the S-Patch, known as the S-Patch MX, which will be able to capture more than 30 biometric signals, including ECG, temperature and body composition.

Wellysis also reports that it will use the funding to expand its Houston-based operations, specifically in its commercial, clinical and customer success teams.

Additionally, the company plans to accelerate the product development of two other biometric products:

  • CardioAI, an AI-powered diagnostic software platform designed to support clinical interpretation, workflow efficiency and scalable cardiac analysis
  • BioArmour, a non-medical biometric monitoring solution for the sports, public safety and defense sectors

“This pre-IPO round validates both our technology and our readiness to scale globally,” Young Juhn, CEO of Wellysis, said in the release. “With FDA-cleared solutions, expanding U.S. operations, and a strong AI roadmap, Wellysis is positioned to redefine how cardiac data is captured, interpreted, and acted upon across healthcare systems worldwide.”

Wellysis was founded in 2019 as a spinoff of Samsung. Its S-Patch runs off of a Samsung Smart Health Processor. The company's U.S. subsidiary, Wellysis USA Inc., was established in Houston in 2023 and was a resident of JLABS@TMC.

Elon Musk vows to launch solar-powered data centers in space

To Outer Space

Elon Musk vowed this week to upend another industry just as he did with cars and rockets — and once again he's taking on long odds.

The world's richest man said he wants to put as many as a million satellites into orbit to form vast, solar-powered data centers in space — a move to allow expanded use of artificial intelligence and chatbots without triggering blackouts and sending utility bills soaring.

To finance that effort, Musk combined SpaceX with his AI business on Monday, February 2, and plans a big initial public offering of the combined company.

“Space-based AI is obviously the only way to scale,” Musk wrote on SpaceX’s website, adding about his solar ambitions, “It’s always sunny in space!”

But scientists and industry experts say even Musk — who outsmarted Detroit to turn Tesla into the world’s most valuable automaker — faces formidable technical, financial and environmental obstacles.

Feeling the heat

Capturing the sun’s energy from space to run chatbots and other AI tools would ease pressure on power grids and cut demand for sprawling computing warehouses that are consuming farms and forests and vast amounts of water to cool.

But space presents its own set of problems.

Data centers generate enormous heat. Space seems to offer a solution because it is cold. But it is also a vacuum, trapping heat inside objects in the same way that a Thermos keeps coffee hot using double walls with no air between them.

“An uncooled computer chip in space would overheat and melt much faster than one on Earth,” said Josep Jornet, a computer and electrical engineering professor at Northeastern University.

One fix is to build giant radiator panels that glow in infrared light to push the heat “out into the dark void,” says Jornet, noting that the technology has worked on a small scale, including on the International Space Station. But for Musk's data centers, he says, it would require an array of “massive, fragile structures that have never been built before.”

Floating debris

Then there is space junk.

A single malfunctioning satellite breaking down or losing orbit could trigger a cascade of collisions, potentially disrupting emergency communications, weather forecasting and other services.

Musk noted in a recent regulatory filing that he has had only one “low-velocity debris generating event" in seven years running Starlink, his satellite communications network. Starlink has operated about 10,000 satellites — but that's a fraction of the million or so he now plans to put in space.

“We could reach a tipping point where the chance of collision is going to be too great," said University at Buffalo's John Crassidis, a former NASA engineer. “And these objects are going fast -- 17,500 miles per hour. There could be very violent collisions."

No repair crews

Even without collisions, satellites fail, chips degrade, parts break.

Special GPU graphics chips used by AI companies, for instance, can become damaged and need to be replaced.

“On Earth, what you would do is send someone down to the data center," said Baiju Bhatt, CEO of Aetherflux, a space-based solar energy company. "You replace the server, you replace the GPU, you’d do some surgery on that thing and you’d slide it back in.”

But no such repair crew exists in orbit, and those GPUs in space could get damaged due to their exposure to high-energy particles from the sun.

Bhatt says one workaround is to overprovision the satellite with extra chips to replace the ones that fail. But that’s an expensive proposition given they are likely to cost tens of thousands of dollars each, and current Starlink satellites only have a lifespan of about five years.

Competition — and leverage

Musk is not alone trying to solve these problems.

A company in Redmond, Washington, called Starcloud, launched a satellite in November carrying a single Nvidia-made AI computer chip to test out how it would fare in space. Google is exploring orbital data centers in a venture it calls Project Suncatcher. And Jeff Bezos’ Blue Origin announced plans in January for a constellation of more than 5,000 satellites to start launching late next year, though its focus has been more on communications than AI.

Still, Musk has an edge: He's got rockets.

Starcloud had to use one of his Falcon rockets to put its chip in space last year. Aetherflux plans to send a set of chips it calls a Galactic Brain to space on a SpaceX rocket later this year. And Google may also need to turn to Musk to get its first two planned prototype satellites off the ground by early next year.

Pierre Lionnet, a research director at the trade association Eurospace, says Musk routinely charges rivals far more than he charges himself —- as much as $20,000 per kilo of payload versus $2,000 internally.

He said Musk’s announcements this week signal that he plans to use that advantage to win this new space race.

“When he says we are going to put these data centers in space, it’s a way of telling the others we will keep these low launch costs for myself,” said Lionnet. “It’s a kind of powerplay.”

Johnson Space Center and UT partner to expand research, workforce development

onward and upward

NASA’s Johnson Space Center in Houston has forged a partnership with the University of Texas System to expand collaboration on research, workforce development and education that supports space exploration and national security.

“It’s an exciting time for the UT System and NASA to come together in new ways because Texas is at the epicenter of America’s space future. It’s an area where America is dominant, and we are committed as a university system to maintaining and growing that dominance,” Dr. John Zerwas, chancellor of the UT System, said in a news release.

Vanessa Wyche, director of Johnson Space Center, added that the partnership with the UT System “will enable us to meet our nation’s exploration goals and advance the future of space exploration.”

The news release noted that UT Health Houston and the UT Medical Branch in Galveston already collaborate with NASA. The UT Medical Branch’s aerospace medicine residency program and UT Health Houston’s space medicine program train NASA astronauts.

“We’re living through a unique moment where aerospace innovation, national security, economic transformation, and scientific discovery are converging like never before in Texas," Zerwas said. “UT institutions are uniquely positioned to partner with NASA in building a stronger and safer Texas.”

Zerwas became chancellor of the UT System in 2025. He joined the system in 2019 as executive vice chancellor for health affairs. Zerwas represented northwestern Ford Bend County in the Texas House from 2007 to 2019.

In 1996, he co-founded a Houston-area medical practice that became part of US Anesthesia Partners in 2012. He remained active in the practice until joining the UT System. Zerwas was chief medical officer of the Memorial Hermann Hospital System from 2003 to 2008 and was its chief physician integration officer until 2009.

Zerwas, a 1973 graduate of the Houston area’s Bellaire High School, is an alumnus of the University of Houston and Baylor College of Medicine.