At a research facility just outside of Houston, scientists have found a plant that has COVID-19 treatment potential. Photo courtesy of iBio

The original version of this story included some factual inaccuracies due to misinformation from a source. The story below has been corrected.

In a 130,000 square-foot facility outside of Bryan-College Station, iBio is growing the makings of new types of therapeutics for fibrosis, cancer, and even COVID-19.

The company, which moved its headquarters from New York to Texas in July, uses novel biopharma methods to produce the vital molecules and antigens used for vaccines and other types of medical treatments through plants in a fast, sustainable way.

Other methods of creating biopharmaceutical require scientists to engineer cells to create a desired protein, which can be one of the most time consuming parts of the process, IBio's CEO Tom Isett explains. However, through iBio's FastPharming method, the team let's the plants do most of the work.

IBio introduces an Agrobacterium carrying a desired gene to manipulate the plant's DNA.

"[The bacteria] takes over the machinery of the plant leaves and it then produces the protein of interest or the biopharmaceutical that we were going to want to make for people," Isett says.

IBio then harvests the leaves and purifies the proteins to make the biopharmaceutical of interest. The entire process can save anywhere from six to 18 months in development, he estimates.

Too, if there's demand for more of the product, through this process, all scientists need to do is grow more plants.

"We have a linear scale up, it's very straightforward," says Peter Kipp, iBio's VP of translational science and alliance management. "And using some of the other competing methodologies, as you go to a bigger scale, you have new technical problems that you have to solve, but we don't."

The team discovered that an Australian species of the tobacco plant could be one of their biggest conduits in their process.

"It just grows like a weed. And that's why we like it," Kipp says.

The plant expends most of its energy in creating its leaves, where IBio extracts most of its proteins from. The plants are grown in the company's indoor, vertical hydroponic facility and are able to be harvested about every six weeks, and (it's important to note) does not contain nicotine.

IBio used their FastPharming process to introduce two vaccine candidates and a therapeutic in about six week's time. However, Isett says they're not just a COVID-19 vaccine company.

"We're mostly focused in other areas. But when [COVID] showed up, we did want to go in and see if we could address it using the speed of our system," he says.

Solugen, which uses plant-centered biotechnology to produce environmentally friendly chemicals, has raised an additional $30 million and is speculated to soon reach unicorn status. Photo via solugentech.com

Houston startup raises $30M, plans to be 'next iconic chemical company' with plant-based alternatives

climate tech

While Forbes recently anointed Houston-based Solugen Inc. as one of the next billion-dollar "unicorns" in the startup world, Dr. Gaurab Chakrabarti shrugs off the unicorn buzz.

Chakrabarti, a physician and scientist who's co-founder and CEO of the startup, concedes he doesn't know whether Solugen will be worth $1 billion or not. But he does know that the startup aspires to be a key competitor in the emerging "climate tech" sector, whose players strive to combat climate change. Chakrabarti estimates the climate-tech chemical space alone represents a global market opportunity valued at $1 trillion to $2 trillion per year.

Solugen's overarching goal in the climate-tech market: Replace petroleum-based chemicals with plant-based substitutes.

"I'd love it if we were the poster child that drives climate tech to be the next big, sexy trend," Chakrabarti says.

Chakrabarti acknowledges Solugen's investors, executives, and employees hope the startup succeeds financially. But success, he believes, goes beyond making money and plotting an exit strategy. Instead, Chakrabarti emphasizes "a shift in thinking" on climate tech that he says promises to transform the fledgling sector into a "true niche" that'll be "good for everyone."

"Who cares if people are all hyped up for the wrong reasons?" says Chakrabarti, referring to the unicorn speculation.

Solugen sits at the crossroads of biology and chemistry. In short, the startup taps into plant-centered biotechnology to produce environmentally friendly chemicals and "decarbonize" the chemical industry.

"Quite simply, we want to become the next DowDuPont or the next iconic chemical company, but using principles of green chemistry instead of principles from petroleum chemistry," Chakrabarti says.

If Solugen does reach the icon stratosphere, Chakrabarti envisions it doing so on a speedy schedule. In the traditional petrochemical market, it can take 10 to 20 years to put a new product on the market, he says. "I don't have that kind of time. I'm a very impatient person," Chakrabarti says.

Gaurab Chakrabarti Gaurab Chakrabarti, CEO and co-founder of Solugen, isn't paying any mind to his company's predicted unicorn status — rather he's focusing on the difference he can make on reducing carbon emissions. Photo via solugentech.com

Spurred by that restlessness, Chakrabarti seeks to propel Solugen's products from concept to commercialization in the span of two years. He says the startup already has proven the ability to do that with its sugar-derived hydrogen peroxide product.

"We're going to continue to do that, and it would be great if we can continue demonstrating new [products] coming to market once a year," says Chakrabarti, who grew up in Sugar Land.

Solugen seems to have plenty of financial fuel to make that happen. In April, Solugen raised $30 million in venture capital as an add-on to its Series B funding, which initially closed May 2019. That brings its total VC haul to $68 million since it was founded in 2016, according to Forbes. The recent funding lifted the company's valuation to $250 million, putting it $750 million away from unicorn territory.

Chakrabarti doesn't dismiss the notion of an eventual IPO for Solugen but says being acquired isn't "terribly interesting to me."

"If you want to make money, you can always go be a banker," he notes.

Chakrabarti estimates Solugen will generate $30 million to $40 million in revenue this year, up from $12 million in 2019. Profit remains elusive, though, as the company pours its gains into R&D. The company graduated in 2017 from the Y Combinator startup accelerator. Aside from Y Combinator and Unicorn Venture Partners, investors include Founders Fund, Refactor Capital, Fifty Years, and KdT Ventures.

Solugen's current lineup features fewer than a half-dozen products, which are sold to industrial and government customers. Hundreds more products are in the pipeline for use in sectors like agriculture and energy, Chakrabarti says.

"It's one of the blessings and curses of this company — there's always something to work on, always something big to scale up," says Chakrabarti, who earned his M.D. and Ph.D. from the University of Texas Southwestern Medical Center in Dallas.

Working on selling Solugen's current products and developing its new products are 70 employees, located at its headquarters in Houston and its new production facility in Lubbock. By the end of this year, the startup should employ close to 100 people, Chakrabarti says.

Chakrabarti hesitates to identify Solugen's competitors, as he believes a perceived rival very well could end up becoming a partner.

"I think everyone eventually should be a partner of Solugen, not competition," he says. "It's an ideology that's actually the competition, an ideology like, 'We've always used petrochemistry. This is just how it's been done.'"

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston engineers develop breakthrough device to advance spinal cord treatment

future of health

A team of Rice University engineers has developed an implantable probe over a hundred times smaller than the width of a hair that aims to help develop better treatments for spinal cord disease and injury.

Detailed in a recent study published in Cell Reports, the probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement, according to a statement from Rice. The research was supported by the National Institutes of Health, Rice, the California-based Salk Institute for Biological Studies, and the philanthropic Mary K. Chapman Foundation based in Oklahoma.

The soft and flexible sensor was used to record neuronal activity in freely moving mice with high resolution for multiple days. Historically, tracking this level of activity has been difficult for researchers because the spinal cord and its neurons move so much during normal activity, according to the team.

“We developed a tiny sensor, spinalNET, that records the electrical activity of spinal neurons as the subject performs normal activity without any restraint,” Yu Wu, a research scientist at Rice and lead author of the study said in a statement. “Being able to extract such knowledge is a first but important step to develop cures for millions of people suffering from spinal cord diseases.”

The team says that before now the spinal cord has been considered a "black box." But the device has already helped the team uncover new findings about the body's rhythmic motor patterns, which drive walking, breathing and chewing.

Lan Luan (from left), Yu Wu, and Chong Xie are working on the breakthrough device. Photo by Jeff Fitlow/Rice University

"Some (spinal neurons) are strongly correlated with leg movement, but surprisingly, a lot of neurons have no obvious correlation with movement,” Wu said in the statement. “This indicates that the spinal circuit controlling rhythmic movement is more complicated than we thought.”

The team said they hope to explore these findings further and aim to use the technology for additional medical purposes.

“In addition to scientific insight, we believe that as the technology evolves, it has great potential as a medical device for people with spinal cord neurological disorders and injury,” Lan Luan, an associate professor of electrical and computer engineering at Rice and a corresponding author on the study, added in the statement.

Rice researchers have developed several implantable, minimally invasive devices to address health and mental health issues.

In the spring, the university announced that the United States Department of Defense had awarded a four-year, $7.8 million grant to the Texas Heart Institute and a Rice team led by co-investigator Yaxin Wang to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation.

That same month, the university shared news that Professor Jacob Robinson had published findings on minimally invasive bioelectronics for treating psychiatric conditions. The 9-millimeter device can deliver precise and programmable stimulation to the brain to help treat depression, obsessive-compulsive disorder and post-traumatic stress disorder.

Houston clean hydrogen startup to pilot tech with O&G co.

stay gold

Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

“This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

“With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

------

This article originally ran on EnergyCapital.

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes an e-commerce startup founder, an industrial biologist, and a cellular scientist.

Omair Tariq, co-founder and CEO of Cart.com

Omair Tariq of Cart.com joins the Houston Innovators Podcast to share his confidence in Houston as the right place to scale his unicorn. Photo via Cart.com

Houston-based Cart.com, which operates a multichannel commerce platform, has secured $105 million in debt refinancing from investment manager BlackRock.

The debt refinancing follows a recent $25 million series C extension round, bringing Cart.com’s series C total to $85 million. The scaleup’s valuation now stands at $1.2 billion, making it one of the few $1 billion-plus “unicorns” in the Houston area.

Cart.com was co-founded by CEO Omair Tariq in October 2020. Read more.

Nádia Skorupa Parachin, vice president of industrial biotechnology at Cemvita

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos. Read more.

Han Xiao, associate professor of chemistry at Rice University

The funds were awarded to Han Xiao, a chemist at Rice University.

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories. Xiao will use the five-year grant to advance his work on noncanonical amino acids.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement. Read more.