From left: Shubhanshu Shukla, Peggy Whitson, Sławosz Uzanański-Wiśniewksi, Tibor Kapu.

The first astronauts in more than 40 years from India, Poland and Hungary arrived at the International Space Station on Thursday, ferried there by SpaceX on a private flight.

The crew of four will spend two weeks at the orbiting lab, performing dozens of experiments. They launched Wednesday from NASA’s Kennedy Space Center.

America’s most experienced astronaut, Peggy Whitson, is the commander of the visiting crew. She works for Axiom Space, the Houston company that arranged the chartered flight.

Besides Whitson, the crew includes India’s Shubhanshu Shukla, a pilot in the Indian Air Force; Hungary’s Tibor Kapu, a mechanical engineer; and Poland’s Slawosz Uznanski-Wisniewski, a radiation expert and one of the European Space Agency’s project astronauts on temporary flight duty.

No one has ever visited the International Space Station from those countries before. The time anyone rocketed into orbit from those countries was in the late 1970s and 1980s, traveling with the Soviets.

“It’s an honor to have you join our outpost of international cooperation and exploration," NASA's Mission Control radioed from Houston minutes after the linkup high above the North Atlantic.

The new arrivals shared hugs and handshakes with the space station's seven full-time residents, celebrating with drink pouches sipped through straws. Six nations were represented: four from the U.S., three from Russia and one each from Japan, India, Poland and Hungary.

"It’s so great to be here finally. It was a long quarantine," Whitson said, referring to the crew's extra-long isolation before liftoff to stay healthy.

They went into quarantine on May 25, stuck in it as their launch kept getting delayed. The latest postponement was for space station leak monitoring, NASA wanted to make sure everything was safe following repairs to a longtime leak on the Russian side of the outpost.

It's the fourth Axiom-sponsored flight to the space station since 2022. The company is one of several that are developing their own space stations due to launch in the coming years. NASA plans to abandon the International Space Station in 2030 after more than three decades of operation, and is encouraging private ventures to replace it.

Axiom Mission 4 will be Peggy Whitson’s second commercial human spaceflight mission with Axiom Space. Photo courtesy of Axiom

Houston space tech unicorn names next mission leader, team

ready for takeoff

NASA veteran Peggy Whitson, a former student and professor at Houston’s Rice University, will command the global crew heading to the International Space Station aboard a private mission directed by Houston-based Axiom Space.

Whitson and her three fellow crew members arrived in Houston on August 6 to train with Axiom Space, NASA, and SpaceX for Axiom Mission 4. The mission is tentatively scheduled for October 2024.

The three astronauts joining Whitson will be:

  • Shubhanshu Shukla, the mission pilot, representing the Indian Space Research Organization
  • Sławosz Uznański, a mission specialist representing the European Space Agency and Poland
  • Tibor Kapu of Hungary, a mission specialist

Axiom Mission 4 will be Whitson’s second commercial human spaceflight mission with Axiom.

“With a culturally diverse crew, we are not only advancing scientific knowledge but also fostering international collaboration. Our previous missions set the stage,” Whitson says in a news release.

Axiom Mission 1 was the first private mission to the space station, Axiom Mission 2 launched the first Saudi woman into space, and

Axiom Mission 3 featured the first Turkish astronaut and first European Space Agency astronaut to fly on a commercial space mission.

With Axiom Mission 4, “we ascend even higher, bringing even more nations to low-Earth orbit and expanding humanity’s reach among the stars,” says Whitton.

From 1981 to 1985, Whitson conducted graduate work in biochemistry at Rice, where she earned a doctoral degree. She was a predoctoral and postdoctoral fellow.

Whitson’s vast experience includes:

  • Adjunct professor in biochemistry and genetics at the University of Texas Medical Branch in Galveston
  • Adjunct assistant professor in biochemistry and genetics at Rice
  • Research biochemist at NASA’s Johnson Space Center
  • Deputy division chief of medical sciences at Johnson Space Center.
  • Chief of station operations at NASA’s Astronaut Office
  • Chief of NASA’s Astronaut Corps
  • Crew member of three NASA space missions

Whitton and the three other astronauts still must gain approval for the Axiom mission from the five organizations that oversee the space station: NASA, the European Space Agency, Roscosmos (the Russian space agency), the Japan Aerospace Exploration Agency, and the Canadian Space Agency.

Axiom 4 “represents Axiom Space’s continued efforts to build opportunity for countries to research, innovate, test, and engage with people around the world while in low-Earth orbit,” says Michael Suffredini, CEO of Axiom Space. “This mission broadens horizons for nations with ambitious goals of advancing scientific, technological, and economic pursuits.”

This mission will emphasize scientific research, tech demonstrations, and space commercialization.

From Florida, the Axiom 4 crew will go to the International Space Station aboard a Falcon 9 rocket and Dragon spacecraft, both made by SpaceX. The crew is expected to spend up to 14 days at the space station.

Here's what experiments TRISH is launching aboard Axiom Space's next mission. Photo via NASA

Houston space health institute to launch more experiments into space on upcoming mission

ready for takeoff

Houston's Translational Research Institute for Space Health, or TRISH, will launch six more experiments into space this spring aboard Axiom Space's Ax-2 mission, the organization announced this week.

The biomedical research conducted through TRISH, in consortium with CalTeach and MIT, will look into how space travel impacts everything from motion sickness to memory over the course of the mission's 10-day stint on the International Space Station.

The crew will consist of four astronauts: Commander Peggy Whitson (previously with NASA), Pilot John Shoffner and Mission Specialists Ali AlQarni and Rayyanah Barnawi. It's a historic team, bringing the first female private space crew commander and the first Saudi astronauts to the ISS.

“Insights gathered from this work improve our understanding of how the human body and mind respond to spaceflight, helping us to prepare future astronauts to remain safe and healthy during longer-duration missions," Dr. Dorit Donoviel, TRISH executive director and professor in the Center for Space Medicine at Baylor College of Medicine, says in a statement.

The six projects onboard the mission have been developed by researchers within TRISH as well as the University of Pennsylvania Perelman School of Medicine, Johns Hopkins University and Baylor College of Medicine. They aim to assess the following:

  • Spaceflight participants’ performance in memory, abstraction, spatial orientation, emotion recognition, risk decision making and sustained attention before and after the mission -Astronauts’ inner ears and eyes' response to motion before and after space travel and how this relates to motion sickness and nausea during launch and landing
  • The effects of spaceflight on the human body at the genomic level
  • Changes to the eyes and brain during spaceflight
  • Astronaut's sleep, personality, health history, team dynamics and immune-related symptoms
  • Sensorimotor abilities and changes in space and how this can impact astronauts' ability to stand, balance and have full body control on the moon

Some of this information will become part of TRISH’s Enhancing eXploration Platforms and ANalog Definition, or EXPAND, program, which aims to boost human health on commercial space flights through its database. The program launched in 2021.

Ax-2 is Axiom's second all-private astronaut mission to the ISS and will launch out of NASA’s Kennedy Space Center in Florida aboard a SpaceX's Dragon spacecraft. Axiom was first established in 2016 with the goal of building the world's first commercial space station.

TRISH is also slated to launch nine experiments on board SpaceX's Polaris Dawn mission, which is now expected to launch this summer. The research aboard Polaris Dawn is intended to complement research supported by TRISH on the Inspiration4 all-civilian mission to orbit, which was also operated by SpaceX in 2021.

Axiom Space has announced its crew for its second commercial space launch. Image via Axiom

Houston space company announces historic flight crew

ready for liftoff

A Houston-based company is making history with its next commercial flight mission.

Axiom Space announced that Axiom Mission 2, or Ax-2, the second all-private mission to the International Space Station, will have members of the Kingdom of Saudi Arabia's national astronaut program aboard. It will also be the first private mission commanded by a woman: Peggy Whitson, Axiom's director of human spaceflight and former NASA astronaut.

“Axiom Space’s second private astronaut mission to the International Space Station cements our mission of expanding access to space worldwide and supporting the growth of the low-Earth orbit economy as we build Axiom Station,” says Michael Suffredini, president and CEO of Axiom Space, in a news release. “Ax-2 moves Axiom Space one step closer toward the realization of a commercial space station in low-Earth orbit and enables us to build on the legacy and achievements of the ISS, leveraging the benefits of microgravity to better life on Earth.”

Expected to launch this spring, it's the second ISS mission for the commercial aerospace company founded in 2016. Ax-2 Mission Specialists Ali Alqarni and Rayyanah Barnawi will be the first Saudi astronauts to visit the ISS after Axiom and the Kingdom of Saudi Arabia reached an agreement in 2022. With this mission, KSA will become only the sixth country to have two astronauts working on the ISS at the same time.

“This flight is an integral milestone of a comprehensive program aiming to train and qualify experienced Saudis to undertake human spaceflight, conduct scientific experiments, participate in international research, and future space-related missions contributing to the Kingdom’s Vision 2030,” reads a statement from the country.

Pilot John Shoffner, a businessman and aviator from Knoxville, Tennessee, with over 8,500 hours of flying under his belt, is the crew's fourth and final member.

A SpaceX Falcon 9 rocket will launch the Ax-2 crew aboard a SpaceX Dragon spacecraft to the ISS from NASA’s Kennedy Space Center in Florida, and they will spend 10 days on the mission. The mission is targeted for launch in the spring of 2023, and will be the first private space mission to include both private astronauts and astronauts representing foreign governments.

Whitson, a Rice university alum, will add to her deep resume, which also includes adding even more space time to the standing record for the longest cumulative time of any astronaut in the history of the U.S. space program.

“I am honored and excited to lead the Ax-2 crew and mission,” Whitson says in a statement. “The space station is a vital platform for all types of research. We at Axiom Space are committed to working with NASA to open the door for private citizens to contribute to and advance the groundbreaking research aboard the station, forging the path for us to operate, live and work abroad Axiom Station.”

Axiom aims to build its own commercial space station to launch in late 2025. Axiom’s first mission completed last April, and the company, deemed a unicorn with a $1 billion valuation, has raised $200 million, including a $130 million series B round in 2021.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH receives $2.6M gift to support opioid addiction research and treatment

drug research

The estate of Dr. William A. Gibson has granted the University of Houston a $2.6 million gift to support and expand its opioid addiction research, including the development of a fentanyl vaccine that could block the drug's ability to enter the brain.

The gift builds upon a previous donation from the Gibson estate that honored the scientist’s late son Michael, who died from drug addiction in 2019. The original donation established the Michael C. Gibson Addiction Research Program in UH's department of psychology. The latest donation will establish the Michael Conner Gibson Endowed Professorship in Psychology and the Michael Conner Gibson Research Endowment in the College of Liberal Arts and Social Sciences.

“This incredibly generous gift will accelerate UH’s addiction research program and advance new approaches to treatment,” Daniel O’Connor, dean of the College of Liberal Arts and Social Sciences, said in a news release.

The Michael C. Gibson Addiction Research Program is led by UH professor of psychology Therese Kosten and Colin Haile, a founding member of the UH Drug Discovery Institute. Currently, the program produces high-profile drug research, including the fentanyl vaccine.

According to UH, the vaccine can eliminate the drug’s “high” and could have major implications for the nation’s opioid epidemic, as research reveals Opioid Use Disorder (OUD) is treatable.

The endowed professorship is combined with a one-to-one match from the Aspire Fund Challenge, a $50 million grant program established in 2019 by an anonymous donor. UH says the program has helped the university increase its number of endowed chairs and professorships, including this new position in the department of psychology.

“Our future discoveries will forever honor the memory of Michael Conner Gibson and the Gibson family,” O’Connor added in the release. “And I expect that the work supported by these endowments will eventually save many thousands of lives.”

CenterPoint and partners launch AI initiative to stabilize the power grid

AI infrastructure

Houston-based utility company CenterPoint Energy is one of the founding partners of a new AI infrastructure initiative called Chain Reaction.

Software companies NVIDIA and Palantir have joined CenterPoint in forming Chain Reaction, which is aimed at speeding up AI buildouts for energy producers and distributors, data centers and infrastructure builders. Among the initiative’s goals are to stabilize and expand the power grid to meet growing demand from data centers, and to design and develop large data centers that can support AI activity.

“The energy infrastructure buildout is the industrial challenge of our generation,” Tristan Gruska, Palantir’s head of energy and infrastructure, says in a news release. “But the software that the sector relies on was not built for this moment. We have spent years quietly deploying systems that keep power plants running and grids reliable. Chain Reaction is the result of building from the ground up for the demands of AI.”

CenterPoint serves about 7 million customers in Texas, Indiana, Minnesota and Ohio. After Hurricane Beryl struck Houston in July 2024, CenterPoint committed to building a resilient power grid for the region and chose Palantir as its “software backbone.”

“Never before have technology and energy been so intertwined in determining the future course of American innovation, commercial growth, and economic security,” Jason Wells, chairman, president and CEO of CenterPoint, added in the release.

In November, the utility company got the go-ahead from the Public Utility Commission of Texas for a $2.9 billion upgrade of its Houston-area power grid. CenterPoint serves 2.9 million customers in a 12-county territory anchored by Houston.

A month earlier, CenterPoint launched a $65 billion, 10-year capital improvement plan to support rising demand for power across all of its service territories.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.