While each of this week's three innovators has years of experience under their belts, they are each starting something new. Courtesy photos

3 Houston innovators to know this week

Who's who

Common ingredients among entrepreneurs is a great idea, plenty of hard work, and a whole lot of luck. And, if they are lucky, they've got some experience under their belts too. These three innovators this week are all in the process of starting something — a venture fund, an app, an investment platform — but lucky for them, they know what they're doing.

Allison Lami Sawyer, partner at The League of Worthwhile Ventures

Courtesy of Allison Lami Sawer

Allison Lami Sawyer's story has stuck with me since I first heard it a few weeks ago. Primarily because she's a fantastic storyteller paired with, well, a great story. She's from Alabama and didn't really meet a female entrepreneur until she was one. She started Rebellion Photonics and ran it for several years before recently leaving to start something new: a seed fund called The League of Worthwhile Ventures. Sawyer isn't afraid to start something new and cherishes her role inspiring or advising other women entrepreneurs by being a role model for innovation — something she didn't have as a kid. Read the full story here.

Chris Staffel, COO at Patients We Share

Courtesy of Chris Staffel

While relatively new to the health care business, Chris Staffel has tons of business experience from both coasts. She brings those skills to Patients We Share, an app aiming to enhance and improve doctor referrals. The idea originated from two doctors here in Houston, but as it started to take off, they invested in business professionals like Staffel to make their dream a reality. Read the full story here.

Rashad Kurbanov, CEO and co-founder of iownit.us

Courtesy of iownit.us

I'm bending the rules a little bit here because, unfortunately, Houston cannot claim Rashad Kurbanov. However, the New Yorker is betting on Houston for his new company, iownit.us. The website is a platform for private securities investors and fund-raising companies to connect and make deals — without any red tape. Kurbanov has years of financial experience, but has never done anything like this before because well, no one has. Read the full story here.

Efficient referrals from doctor to doctor could save a life, so this Houston company is setting out to create a network of medical professionals all accessible in an app. Getty Images

Houston-based company is connecting the dots on patient referrals

Diagnosing doctors

When your doctor recommends that you visit another practitioner, it's only natural that you trust the suggestion. But it's one case in which your physician isn't always an expert. Married doctors Justin Bird, an orthopedic surgeon, and Terri-Ann Samuels, a specialist in female pelvic medicine and reconstructive surgery, have long noted that patients are often referred incorrectly.

No big deal, right? Just go to another doctor. But not everyone has that luxury. Bird and Samuels never intended to start their own company. But when Bird lost a patient due to faulty referrals, they knew something had to be done.

"He believes that if she hadn't been bounced around from doctor to doctor, they could have saved her life," says Chris E. Staffel, chief operating officer of Patients We Share, the app that the couple created to fix the broken aspect of the health care system.

In 2015, Bird and Samuels began their company when they were shocked to realize that such an app didn't already exist.

"They started working with physicians around the country who said, 'We really, really need this,' and they also invested in it," recounts Staffel. From those friends, they built a physician advisory board of 15 investors.

Prescribing growth
The project was accepted into Johnson & Johnson's incubator, JLABS in 2016, then TMCx's digital startup program in the spring of 2018.

"They started realizing it was gaining momentum and realized they needed to have business people on board," says Staffel.

They hired Michael Antonoff, a Rice University M.B.A., as CEO. He invited former classmate Staffel to join as COO. Having come from a background in oil and gas, Staffel jumped at the chance to try her hand in a different industry.

With new business clout behind PWS, the company is growing quickly. Currently, PWS is entering its next seed round of $2.5 million that will allow the company to pay salaries of new team members and bring some tech development in-house. Until now, the making of the app itself has been outsourced to Mobisoft Infotech, a company based in Houston and India, which has worked on many projects at the Texas Medical Center. Local Black + Grey Studio is responsible for the design.

PWS has been working with both those teams in recent months to get a prototype app ready for launch. Currently, 100 physicians around the country are part of an invite-only pilot program. Soon, Staffel hopes to allow early adopter doctors who haven't been invited to enroll in the program for free. It will likely be in 2020 that patients will start joining the community, too.

How it works
An index of all the providers on the app allows doctors to easily find practitioners in a particular specialty. But there's more to it. Detailed profiles contribute to machine learning that assures the optimal match every time. Patient reviews will also play a role.

Though referrals were the impetus for the creation of PWS, it may be even more important as a communication tool between doctors, fellow clinicians (anyone from nurse practitioners to physical therapists may be invited to join), and patients. Staffel says participants in the pilot program are already using the messaging system to compare notes on cases, even sending photos from surgery to consult on patient issues.

The app's encryption means that it's HIPAA-compliant. Patients provide permission to discuss their cases via the app. And they can be confident of the quality of care they'll receive. Likely, the app will remain largely invite-only, and everyone who joins will share their National Provider Identifier licenses to be vetted against the federal database.

Doctors will communicate directly with patients through the app, but will also share resources digitally. Instead of making copy after copy of information about post-surgical care, for instance, the physician need only press a button to share a link.

Eventually, the goal is for PWS to be used not just nationally, but internationally, not just by individuals, but by whole hospital systems. A world in which doctors can compare notes around globe could be a little safer for us all.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH student earns prestigious award for cancer vaccine research

up-and-comer

Cole Woody, a biology major in the College of Natural Sciences and Mathematics at the University of Houston, has been awarded a Barry Goldwater Scholarship, becoming the first sophomore in UH history to earn the prestigious prize for research in natural sciences, mathematics and engineering.

Woody was recognized for his research on developing potential cancer vaccines through chimeric RNAs. The work specifically investigates how a vaccine can more aggressively target cancers.

Woody developed the MHCole Pipeline, a bioinformatic tool that predicts peptide-HLA binding affinities with nearly 100 percent improvement in data processing efficiency. The MHCole Pipeline aims to find cancer-specific targets and develop personalized vaccines. Woody is also a junior research associate at the UH Sequencing Core and works in Dr. Steven Hsesheng Lin’s lab at MD Anderson Cancer Center.

“Cole’s work ethic and dedication are unmatched,” Preethi Gunaratne, director of the UH Sequencing Core and professor of Biology & Biochemistry at NSM, said in a news release. “He consistently worked 60 to 70 hours a week, committing himself to learning new techniques and coding the MHCole pipeline.”

Woody plans to earn his MD-PhD and has been accepted into the Harvard/MIT MD-PhD Early Access to Research Training (HEART) program. According to UH, recipients of the Goldwater Scholarship often go on to win various nationally prestigious awards.

"Cole’s ability to independently design and implement such a transformative tool at such an early stage in his career demonstrates his exceptional technical acumen and creative problem-solving skills, which should go a long way towards a promising career in immuno-oncology,” Gunaratne added in the release.

Houston founder on shaping the future of medicine through biotechnology and resilience

Guest Column

Living with chronic disease has shaped my life in profound ways. My journey began in 5th grade when I was diagnosed with Scheuermann’s disease, a degenerative disc condition that kept me sidelined for an entire year. Later, I was diagnosed with hereditary neuropathy with liability to pressure palsies (HNPP), a condition that significantly impacts nerve recovery. These experiences didn’t just challenge me physically, they reshaped my perspective on healthcare — and ultimately set me on my path to entrepreneurship. What started as personal health struggles evolved into a mission to transform patient care through innovative biotechnology.

A defining part of living with these conditions was the diagnostic process. I underwent nerve tests that involved electrical shocks to my hands and arms — without anesthesia — to measure nerve activity. The pain was intense, and each test left me thinking: There has to be a better way. Even in those difficult moments, I found myself thinking about how to improve the tools and processes used in healthcare.

HNPP, in particular, has been a frustrating condition. For most people, sleeping on an arm might cause temporary numbness that disappears in an hour. For me, that same numbness can last six months. Even more debilitating is the loss of strength and fine motor skills. Living with this reality forced me to take an active role in understanding my health and seeking solutions, a mindset that would later shape my approach to leadership.

Growing up in Houston, I was surrounded by innovation. My grandfather, a pioneering urologist, was among the first to introduce kidney dialysis in the city in the 1950s. His dedication to advancing patient care initially inspired me to pursue medicine. Though my path eventually led me to healthcare administration and eventually biotech, his influence instilled in me a lifelong commitment to medicine and making a difference.

Houston’s thriving medical and entrepreneurial ecosystems played a critical role in my journey. The city’s culture of innovation and collaboration provided opportunities to explore solutions to unmet medical needs. When I transitioned from healthcare administration to founding biotech companies, I drew on the same resilience I had developed while managing my own health challenges.

My experience with chronic disease also shaped my leadership philosophy. Rather than accepting diagnoses passively, I took a proactive approach questioning assumptions, collaborating with experts, and seeking new solutions. These same principles now guide decision-making at FibroBiologics, where we are committed to developing groundbreaking therapies that go beyond symptom management to address the root causes of disease.

The resilience I built through my health struggles has been invaluable in navigating business challenges. While my early career in healthcare administration provided industry insights, launching and leading companies required the same determination I had relied on in my personal health journey.

I believe the future of healthcare lies in curative treatments, not just symptom management. Fibroblast cells hold the promise of engaging the body’s own healing processes — the most powerful cure for chronic diseases. Cell therapy represents both a scientific breakthrough and a significant business opportunity, one that has the potential to improve patient outcomes while reducing long-term healthcare costs.

Innovation in medicine isn’t just about technology; it’s about reimagining what’s possible. The future of healthcare is being written today. At FibroBiologics, our mission is driven by more than just financial success. We are focused on making a meaningful impact on patients’ lives, and this purpose-driven approach helps attract talent, engage stakeholders, and differentiate in the marketplace. Aligning business goals with patient needs isn’t just the right thing to do, it’s a powerful model for sustainable growth and lasting innovation in biotech.

---

Pete O’Heeron is the CEO and founder of FibroBiologics, a Houston-based regenerative medicine company.


Houston researchers make headway on affordable, sustainable sodium-ion battery

Energy Solutions

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

---

This story originally appeared on EnergyCapitalHTX.com.