Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos.

Parachin will lead the Cemvita team that’s developing technology for production of bio-manufactured oil.

“It’s a fantastic moment, as we’re poised to take our prototyping to the next level, and all under the innovative direction of our co-founder Tara Karimi,” Parachin says in a news release. “We will be bringing something truly remarkable to market and ensuring it’s cost-effective.”

Moji Karimi, co-founder and CEO of Cemvita, says the hiring of Parachin represents “the natural next step” toward commercializing the startup’s carbon-to-oil process.

“Her background prepared her to bring the best out of the scientists at the inflection point of commercialization — really bringing things to life,” says Moji Karimi, Tara’s brother.

Parachin joins Garcia on Cemvita’s executive team.

Before being promoted to vice president of commercialization, Garcia was the startup’s commercial director and business development manager. He has a background in engineering and business development.

Founded in 2017, Cemvita recently announced a breakthrough that enables production of large quantities of oil derived from carbon waste.

In 2023, United Airlines agreed to buy up to one billion gallons of sustainable aviation fuel from Cemvita’s first full-scale plant over the course of 20 years.

Cemvita’s investors include the UAV Sustainable Flight Fund, an investment arm of Chicago-based United; Oxy Low Carbon Ventures, an investment arm of Houston-based energy company Occidental Petroleum; and Japanese equipment and machinery manufacturer Mitsubishi Heavy Industries.

------

This article originally ran on EnergyCapital.

Cemvita reported a successful pilot program on its gold hydrogen project in the Permian Basin. Photo courtesy of Cemvita

Houston cleantech company sees shining success with gold hydrogen

bling, bling

Houston-based cleantech startup Cemvita Factory is kicking things into high gear with its Gold Hydrogen product.

After successfully completing a pilot test of Gold Hydrogen in the oil-rich Permian Basin of West Texas, Cemvita has raised an undisclosed amount of funding through its new Gold H2 LLC spin-out. The lead investors are Georgia-based equipment manufacturer Chart Industries and 8090 Industries, an investment consortium with offices in New York City and Los Angeles.

Gold Hydrogen provides carbon-neutral hydrogen obtained from depleted oil and gas wells. This is achieved through bioengineering subsurface microbes in the wells to consume carbon and generate clean hydrogen.

Cemvita says it set up Gold H2 to commercialize the business via licensing, joint ventures, and outright ownership of hydrogen assets.

“We have incredible conviction in next-generation clean hydrogen production methods that leverage the vast and sprawling existing infrastructure and know-how of the oil and gas industry,” Rayyan Islam, co-founder and general partner of 8090 Industries, says in a news release.

Traditional methods of producing hydrogen without greenhouse gas emissions include electrolysis powered by renewable sources like wind, solar or water, according to Cemvita. However, production of green hydrogen through normal avenues eats up a lot of energy and money, the startup says.

By contrast, Cemvita relies on depleted oil and gas wells to cheaply produce carbon-free hydrogen.

“The commercialization and economics of the hydrogen economy will require technologies that produce the hydrogen molecule at a meaningful scale with no carbon emissions. Gold H2 is leading the charge … ,” says Jill Evanko, president and CEO of Chart Industries.

Investors in Cemvita include Oxy Low Carbon Ventures, an investment arm of Houston-based Occidental Petroleum, as well as BHP Group, Mitsubishi, and United Airlines Ventures.

Oxy Low Carbon Ventures and United Airlines Ventures are financing Cemvita’s work on sustainable jet fuel. United Airlines operates a hub at George Bush Intercontinental Airport Houston.

Founded by brother-and-sister team Moji and Tara Karimi in 2017, Cemvita uses synthetic biology to turn carbon dioxide into chemicals and alternative fuels.

The United and Occidental investment arms are planning to form a joint venture to commercialize the technology. Photo courtesy of Cemvita

Houston biotech startup scores $5M to fuel sustainable aviation innovation

seeing green

Houston cleantech startup Cemvita Factory has scored a $5 million investment from United Airlines Ventures, the venture capital fund of the Chicago-based airline.

The equity investment is aimed at propelling commercialization of sustainable aviation fuel through a process involving carbon dioxide (CO2) and synthetic microbes.

Oxy Low Carbon Ventures, a subsidiary of Houston-based Occidental Petroleum that’s a founding investor in Cemvita, and United Airlines Ventures are financing the startup’s work on sustainable jet fuel. United Airlines operates a hub at George Bush Intercontinental/Houston Airport.

If that work pans out, the United and Occidental investment arms plan to form a joint venture to commercialize the technology. The joint venture might include construction of plants for the production of sustainable aviation fuel.

Sustainable aviation fuel, known as SAF, is an alternative to jet fuel that uses non-petroleum feedstock and offers lower greenhouse gas emissions.

Founded by brother-sister team Moji and Tara Karimi in 2017, Cemvita Factory relies on synthetic biology to turn carbon dioxide into chemicals and alternative fuels, including SAF. The startup, founded in 2017, is among the first companies to employ this technology to support heavy-industry decarbonization and find ways to take advantage of microbiology to convert CO2 into fuel.

“The use of SAF is a promising approach that we believe can significantly reduce global emissions from aviation and further decarbonization initiatives to combat climate change,” Richard Jackson, president of operations for U.S. onshore resources and carbon management at Occidental, says in a news release.

Cemvita is the third SAF-related startup to receive an investment from United Airlines Ventures.

The partnership among Cemvita, Occidental, and United is among many initiatives seeking to ramp up production of SAF. For instance, the U.S. Department of Energy is collaborating with the U.S. Department of Transportation, the U.S. Department of Agriculture, and other federal agencies to develop a strategy for scaling SAF technology.

The global SAF market is projected to grow from $219 million in 2021 to more than $15.7 billion by 2030, according to Research and Markets.

The International Air Transport Association says more than 370,000 flights have been fueled by SAF since 2016. Over 26.4 million gallons of SAF were produced last year.

Last month in France, aircraft manufacturer Airbus flew a A380 test jet for about three hours with one of the four engines operating solely on SAF. The three other engines ran on conventional fuel.

In December 2021, United flew a 737 MAX 8 jet from Chicago O’Hare International Airport to Washington Reagan National Airport outside Washington, D.C., with one of the two engines operating only on SAF. It was the first commercial flight with passengers aboard to use SAF in that capacity. The other engine ran on conventional fuel.

United CEO Scott Kirby, who was aboard the historic flight, said the flight was “not only a significant milestone for efforts to decarbonize our industry, but when combined with the surge in industry commitments to produce and purchase alternative fuels, we’re demonstrating the scalable and impactful way companies can join together and play a role in addressing the biggest challenge of our lifetimes.”

For now, airlines are allowed to use up SAF for up to 50 percent of the fuel on commercial flights.

The brother-sister team at Houston-based Cemvita Factory is celebrating its series A initial closing. Photo courtesy of Cemvita

Houston-based carbon negative biotech startup closes series A round

money moves

A promising Houston startup using biotechnology to reduce carbon emissions is celebrating the initial closing of its series A fundraising round.

Cemvita Factory announced the news of its round closing, but didn't disclose the amount raised. 8090 Partners, a new investment group of entrepreneurs turned investors, led the round. Existing investor Oxy Low Carbon Ventures also contributed, along with Seldor Capital, Climate Capital, and others.

Founded by brother-sister team Moji and Tara Karimi in 2017, the company's technology biomimics photosynthesis to take carbon dioxide and turn it into something else. Cemvita uses this synthetic biology to decarbonize heavy industry across chemical manufacturing, mining, and oil and gas.

"Decarbonizing heavy industry is one of the most critical challenges in addressing climate change," says Moji Karimi, who serves as CEO, in a news release. "Synthetic biology is now primed to revolutionize heavy industries because of its inherent low-carbon advantages, and Cemvita is taking the lead in identifying and derisking the key applications."

Cemvita is currently working. with a number of clients — including Oxy, which announced its pilot in April — to reduce their carbon footprints.

"We believe the adoption rate and market size growth of our target applications will only accelerate due to the urgency for a low-carbon energy transition," Karimi continues. "The future of manufacturing will be low-carbon biomanufacturing and the future of mining will be sustainable biomining."

According to the release, the fresh funds will go toward launching Cemvita's bio-hydrogen solution, as well as to support construction and operation of a bio-ethylene pilot plant with Oxy. The pilot project, which reported success in the lab, is expected to scale.

"While synthetic biology has proven to be effective in re-imagining food and proteins, we've long held a firm belief in synthetic biology's promise in the heavy industrial space, but have waited until we've seen the right technology and team to drive real innovation in the sector," says Rayyan Islam, partner at 8090 Partners, in the release. "Cemvita's technology is a fundamental game-changer that provides a real economic solution and major players across heavy industry have taken serious notice."

It's not just investors and industrial players who have taken notice. Cemvita won the recent GS Beyond Energy Innovation Challenge from Cleantech.org. The company was also selected as a cohort member at Carbon2Value Initiative.

"Cemvita's technology is truly revolutionary in its use of CO2 and as a resource to provide viable economic solutions as more and more companies seek ways to reduce their carbon footprint. We remain impressed and excited about Cemvita's technology's positive impact on Earth and beyond," says Sidney N. Nakahodo, founder and general partner of Seldor Capital, in the release.

Cemvita Factory is working on a pilot plant with Oxy to scale its biotechnology. Photo via OxyLowCarbon.com

Oxy taps Houston startup's carbon negative biotechnology for new pilot plant

sustainability moves

Occidental's venture arm — Oxy Low Carbon Ventures — has announced its plans to construct and operate a one metric ton per month bio-ethylene pilot plant featuring Houston-based Cemvita Factory's technology that biomimics photosynthesis to convert carbon dioxide into feedstocks.

The new plant will scale the process, which was jointly developed between Cemvita and OLCV, and is expected sometime next year, according to a press release from Oxy.

"Today bio-ethylene is made from bio-ethanol, which is made from sugarcane, which in turn was created by photosynthesizing CO2. Our bio-synthetic process simply requires CO2, water and light to produce bio-ethylene, and that's why it saves a lot of cost and carbon emissions," says Moji Karimi, co-founder and CEO of Cemvita Factory, in the release. "This project is a great example of how Cemvita is applying industrial-strength synthetic biology to help our clients lower their carbon footprint while creating new revenue streams."

Oxy and Cemvita have been working together for a while, and in 2019, OLCV invested an undisclosed amount into the startup. The investment, according to the release, was made to jointly explore how these advances in synthetic biology can be used for sustainability efforts in the bio-manufacturing of OxyChem's products.

"This technology could provide an opportunity to offer a new, non-hydrocarbon-sourced ethylene product to the market, reducing carbon emissions, and in the future benefit our affiliate, OxyChem, which is a large producer and consumer of ethylene in its chlorovinyls business," says Robert Zeller, vice president of technology at OLCV, in a news release.

Moji Karimi founded the company with his sister and Cemvita CTO, Tara, in 2017. The idea was to biomimic photosynthesis to take CO2 and turn it into something else. The first iteration of the technology turned CO2 into sugar — the classic photosynthesis process. Karimi says the idea was to create this process for space, so that astronauts can turn the CO2 they breathe out into a calorie source.

"Nature provided the inspiration," noted Dr. Tara Karimi, co-founder and CTO of Cemvita Factory. "We took a gene from a banana and genetically engineered it into our CO2-utilizing host microorganism. We are now significantly increasing its productivity with the goal to achieve commercial metrics that we have defined alongside OLCV."

A couple weeks ago, Moji Karimi joined the Houston Innovators Podcast to discuss growth and challenges Cemvita Factory faced.

"We're defining this new category for application of synthetic biology in heavy industries for decarbonization," he shares on the show. Stream the episode below.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston engineers develop breakthrough device to advance spinal cord treatment

future of health

A team of Rice University engineers has developed an implantable probe over a hundred times smaller than the width of a hair that aims to help develop better treatments for spinal cord disease and injury.

Detailed in a recent study published in Cell Reports, the probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement, according to a statement from Rice. The research was supported by the National Institutes of Health, Rice, the California-based Salk Institute for Biological Studies, and the philanthropic Mary K. Chapman Foundation based in Oklahoma.

The soft and flexible sensor was used to record neuronal activity in freely moving mice with high resolution for multiple days. Historically, tracking this level of activity has been difficult for researchers because the spinal cord and its neurons move so much during normal activity, according to the team.

“We developed a tiny sensor, spinalNET, that records the electrical activity of spinal neurons as the subject performs normal activity without any restraint,” Yu Wu, a research scientist at Rice and lead author of the study said in a statement. “Being able to extract such knowledge is a first but important step to develop cures for millions of people suffering from spinal cord diseases.”

The team says that before now the spinal cord has been considered a "black box." But the device has already helped the team uncover new findings about the body's rhythmic motor patterns, which drive walking, breathing and chewing.

Lan Luan (from left), Yu Wu, and Chong Xie are working on the breakthrough device. Photo by Jeff Fitlow/Rice University

"Some (spinal neurons) are strongly correlated with leg movement, but surprisingly, a lot of neurons have no obvious correlation with movement,” Wu said in the statement. “This indicates that the spinal circuit controlling rhythmic movement is more complicated than we thought.”

The team said they hope to explore these findings further and aim to use the technology for additional medical purposes.

“In addition to scientific insight, we believe that as the technology evolves, it has great potential as a medical device for people with spinal cord neurological disorders and injury,” Lan Luan, an associate professor of electrical and computer engineering at Rice and a corresponding author on the study, added in the statement.

Rice researchers have developed several implantable, minimally invasive devices to address health and mental health issues.

In the spring, the university announced that the United States Department of Defense had awarded a four-year, $7.8 million grant to the Texas Heart Institute and a Rice team led by co-investigator Yaxin Wang to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation.

That same month, the university shared news that Professor Jacob Robinson had published findings on minimally invasive bioelectronics for treating psychiatric conditions. The 9-millimeter device can deliver precise and programmable stimulation to the brain to help treat depression, obsessive-compulsive disorder and post-traumatic stress disorder.

Houston clean hydrogen startup to pilot tech with O&G co.

stay gold

Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

“This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

“With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

------

This article originally ran on EnergyCapital.

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes an e-commerce startup founder, an industrial biologist, and a cellular scientist.

Omair Tariq, co-founder and CEO of Cart.com

Omair Tariq of Cart.com joins the Houston Innovators Podcast to share his confidence in Houston as the right place to scale his unicorn. Photo via Cart.com

Houston-based Cart.com, which operates a multichannel commerce platform, has secured $105 million in debt refinancing from investment manager BlackRock.

The debt refinancing follows a recent $25 million series C extension round, bringing Cart.com’s series C total to $85 million. The scaleup’s valuation now stands at $1.2 billion, making it one of the few $1 billion-plus “unicorns” in the Houston area.

Cart.com was co-founded by CEO Omair Tariq in October 2020. Read more.

Nádia Skorupa Parachin, vice president of industrial biotechnology at Cemvita

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos. Read more.

Han Xiao, associate professor of chemistry at Rice University

The funds were awarded to Han Xiao, a chemist at Rice University.

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories. Xiao will use the five-year grant to advance his work on noncanonical amino acids.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement. Read more.