Five cancer research teams have been selected to receive funds from a new initiative from the University of Texas. Photo via news.utexas.edu

In a renewed effort to move the needle on finding a cure for cancer, the University of Texas system has launched a new collaboration in oncological data and computational science across three programs.

Houston-based University of Texas MD Anderson Cancer Center has teamed up with two UT Austin schools — the Oden Institute for Computational Engineering and Sciences and the Texas Advanced Computing Center. The collaboration was announced this summer to tap into mathematical modeling and advanced computing along with oncology expertise to inspire new methods of cancer treatment.

"Integrating and learning from the massive amount of largely unstructured data in cancer care and research is a formidable challenge," says David Jaffray, Ph.D., chief technology and digital officer at MD Anderson, in a news release. "We need to bring together teams that can place quantitative data in context and inform state-of-the-art computational models of the disease and accelerate progress in our mission to end cancer."

Now, the first five projects to be funded under this new initiative have been announced.

  • Angela Jarrett of the Oden Institute and Maia Rauch of MD Anderson will develop a patient-specific mathematical model for forecasting treatment response and designing optimal therapy strategies for patients with triple-negative breast cancer.
  • Caroline Chung of MD Anderson and David Hormuth of the Oden Institute are using computational models of the underlying biology to fundamentally change how radiotherapy and chemotherapy are personalized to improve survival rates for brain cancer patients.
  • Ken-Pin Hwang of MD Anderson and Jon Tamir of UT Austin's Department of Electrical and Computer Engineering and the Oden Institute will use mathematical modeling and massively parallel distributed computing to make prostate MR imaging faster and more accurate to reduce the incidence of unnecessary or inaccurate biopsies.
  • Xiaodong Zhang of MD Anderson and Hang Liu of TACC will advance both the planning and delivery of proton therapy via a platform that combines mathematical algorithms and high-performance computing to further personalize these already highly tailored treatments.
  • Tinsley Oden and Prashant Jha of the Oden Institute and David Fuentes of MD Anderson will integrate a new mechanistic model of tumor growth with an advanced form of MRI to reveal underlying metabolic alterations in tumors and lead to new treatments for patients.

"These five research teams, made up of a cross section of expertise from all three stakeholders, represent the beginning of something truly special," says Jaffray in a release. "Our experts are advancing cancer research and care, and we are committed to working with our colleagues at the Oden Institute and TACC to bring together their computational expertise with our data and insights."

Later this month, the five teams will log on to a virtual retreat along with academic and government thought leaders to further collaborate and intertwine their research and expertise.

"Texas is globally recognized for its excellence in computing and in cancer research. This collaboration forges a new path to international leadership through the combination of its strengths in both," says Karen Willcox, director of the Oden Institute. "We are thrilled that leaders in government, industry and academia see the potential of this unique Texan partnership. We're looking forward to a virtual retreat on October 29 to continue to build upon this realization."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Unique cell therapy developed in Houston doses inaugural patient

cancer-fighting innovation

Replay, a genome-writing company headquartered in San Diego, has announced that its first patient has been dosed with an engineered T-Cell Receptor Natural Killer (TCR-NK) cell therapy for relapsed or refractory multiple myeloma.

What does that have to do with Houston? Last year, Replay incorporated a first-in-class engineered TCR-NK cell therapy product company, Syena, using technology developed by Dr. Katy Rezvani at The University of Texas MD Anderson Cancer Center.

Rezvani, a professor of stem cell transplantation and cellular therapy, is the force behind MD Anderson’s Rezvani Lab, a group of 55 people, all focused on harnessing natural killer cells to combat cancer.

“Everybody thinks that the immune system is fighting viruses and infections, but I feel our immune system is capable of recognizing and killing abnormal cells or cells that are becoming cancerous and they're very powerful. This whole field of immunotherapy really refers to the power of the immune system,” Rezvani tells InnovationMap.

Dr. Katy Rezvani is a professor of stem cell transplantation and cellular therapy and the force behind MD Anderson’s Rezvani Lab, which is focused on harnessing natural killer cells to combat cancer. Photo via mdanderson.org

At Rezvani Lab, scientists train immune cells to fight cancer. While cancer drugs like chemotherapy are still the norm, immunotherapy has gained ground, led by Houston research, including the work of Nobel laureate Jim Allison. The harnessed cells are taught to attack cancerous cells, while ignoring healthy ones, says Rezvani. “We’re turning them into heat-seeking missiles,” she explains.

However, there must be a beacon to signal to those “missiles” that there is something to attack. Much of the field has used chimeric antigen receptors (CARs) to achieve that. But they have limitations.

“CARs can only recognize beacons that sit on the surface of the tumor cells,” Rezvani says. “So basically, it's like the tumor cell has to have a hat on it.”

She says that this usually means that the targets that send off a signal are relatively limited, mostly blood cancers. Using T cell receptors (TCRs) may be able to open up the field to look beyond the “hat.” In other words, TCRs can peer inside cells and see what differentiates a tumor cell from healthy cells. With Replay, Rezvani Lab has developed a first-in-class and first-in-human approach of engineering natural killer cells to express the TCR.

There are six different FDA-approved products that use CAR-T cells, but Rezvani says that her TCR-NK-based technology, though still in its early phases, shows great promise.

“We could use it to target many different types of antigens, many different types of cancers, especially solid tumors," she explains. "These cell therapies have a lot of potential — we call them living drugs… It's not like chemotherapy where you have to keep giving different multiple cycles, these cells are very long lived.”

Rezvani, who started her career in London, says that Houston has been instrumental in the success of her lab.

“There are so many opportunities because we have access to some of the most brilliant minds in research,” Rezvani says. “We have some of the best clinicians in the world. We have patients who come to us who are willing to participate in our clinical trials — really put their trust in us — and are committed and want to participate in these clinical studies.”

The role of funding also plays a part. As Rezvani admitted, bringing a new technology to the market is expensive. The philanthropists who help support trials can’t be forgotten among Houston’s finest.

Whether or not Syena produces the first TCR-NK product on the market, Rezvani is enthusiastic and hopeful for the future of her patients.

“The field of immunotherapy is really expanding, the field of cell therapies is expanding, and there is so much promise,” she says. “The promise of AI, big data, all the engineering tools that we have available, the promise of CRISPR — all of that is going to bring what we've learned from biology, from basic science, together to help us make the cell therapies that are going to be safe and and also very effective for our patients.”

How corporations can implement meaningful innovation, according to this Houston expert

guest column

I vividly remember, it was a typical Tuesday at Houston Exponential, and I’m sipping maybe my third coffee of the morning when the phone rings.

On the line is yet another hopeful voice from a newly minted innovation group at a "big company." They lay out their vision: “We’ve got this new innovation group! It’s me — a tech enthusiast who’s been yelling into the corporate void about needing to shake things up for the last two decades — plus a data scientist who loves numbers more than people, and a procurement guy who… well, procures stuff. And here’s the kicker: they’ve handed us $60 million to put to work. But here’s the catch — this treasure needs to be turned into a groundbreaking innovation that will dazzle the C-Suite, in about six months.”

I chuckle then sigh, because I’ve heard this story not once or twice, but about a dozen times over. And unfortunately, each of those grand plans crashed faster than a shooting star burning out over the Texas night sky — brilliant, swift, and leaving us wondering what might have been. Why? Well, let’s dig into some observations from my time working with institutional innovators from around the world and uncover just why throwing money at innovation like confetti at a wedding isn’t the quick fix big companies hope it will be.

The big miss here is a deep understanding of and ability to articulate the challenges. Innovation isn’t a highway where you can just press the gas and speed straight to Mt. Scale. It’s more like a winding country road with breathtaking views, unexpected potholes, and the occasional bewildered chicken crossing your path. For institutional innovators — the brave souls charting the course through this ever-changing landscape — the journey is filled with excitement, challenges, and the promise of discovery.

In my first hand experience mentoring over 500 startups and corporations, I’ve seen that the magic of innovation doesn’t come from a deep-pocketed budget but from a deep understanding of the problems we aim to solve. If you can view challenges through a kaleidoscope of perspectives, not just through the monochrome lens of one industry, you find the alternate routes that, while not exactly shortcuts, do keep you from turning down dark alleys and dead ends. A key observation here is that solutions to hard problems often lie in adjacent industries.

For example, consider how biomimicry has led to inventions like Velcro, inspired by burrs' ability to stick to animal fur, or how bullet trains in Japan were designed to mimic the kingfisher's beak for better aerodynamics. These are just a few examples of how solutions to complex problems often reside right in front of us or in the industry next door. Right here in Houston, Pumps & Pipes is a glowing example of how experts from Energy, Life Science and Space converge on similar problem sets with wildly different perspectives and applications.

Imagine if the engineers at NASA sat down for tacos with teachers from the local high school, or if doctors brainstormed with video game designers over a game of pickleball. Sounds fun, right? But it’s also where the magic happens. When we step out of our industry bubbles, we find that the solutions to our biggest problems often come from the most unexpected places.

So how do we begin to find these solutions? It all starts with a clear and clearly articulated challenge statement.

A crucial factor in encouraging organizations to look beyond traditional industry boundaries is to foster a deep understanding of problem-solution fit (you can read more about Problem - Solution fit in my last article here) and that means a deep understanding of the Problem. By guiding problem holders to dig deep into the nuances of the problems they aim to address, we expand their perspective. Once a comprehensive grasp of the problems are established, new pathways for solutions organically emerge. To do this you must broaden the collective thinking to the point where solutions from other industries become not just viable but often the most effective approach. My favorite quote on this subject is that “people don’t need a ¼ inch drill bit, they need a ¼ inch hole, and really they don’t need a ¼ hole, they need to hang a picture and when framed in that context, a command strip is more effective at solving the problem.”

So how do we do this? It’s easy, just continuously ask "why" or “why does this matter to your customer” to peel back the layers of the initial problem statements to reveal underlying causes or first principles. Ok this is actually much harder than it sounds but when organizations are guided through exercises to distill their challenges into first principles and more universal problem statements, a transformation occurs, resulting in several benefits:

  1. Expanding Solution Horizons: By elevating the problem discussion beyond industry-specific issues, the range of potential solutions widens remarkably.
  2. Universal Problem Statements: Restating the issues into more universal terms unlocks innovative approaches and solutions previously unseen.
  3. Enhanced Solution Fit and Success Probability: This reframing leads to solutions that are not only more fitting but also stand a higher chance of successfully being adopted and integrated and thus resolving the underlying issues.
  4. Increased Buy-In: These solutions are and are perceived as more novel and thus receive increased buy-in across the organization when moving towards adoption.

The critical lesson here is the power of abstracting the problem. By pulling back from the immediate and specific issues and reinterpreting them into broader, more universally applicable challenges, we can tap into a richer vein of solutions. This approach not only broadens the scope of potential innovations but also increases the alignment and effectiveness of the solutions we pursue.

The art of crafting challenge statements that are both broad enough to inspire innovative thinking and specific enough to be actionable is crucial. These statements serve as beacons, guiding both internal and external innovation efforts towards solutions that are not bound by conventional industry norms. By framing challenges in a way that invites diverse perspectives, organizations unlock innovative solutions that transcend traditional boundaries, fostering a more expansive and inclusive approach to problem-solving.

Turning lofty ambitions into tangible results begins with understanding that innovation isn’t just about flashy gadgets or the latest buzzwords. It’s about solving real problems for real people. This means rolling up our sleeves, listening intently, and sometimes realizing that the solution isn’t a high-tech wonder but perhaps something as simple and elegant as a command strip instead of a hole in the wall.

------

Jon Nordby is managing partner at Anthropy Partners, a Houston-based investment firm, and professor of entrepreneurship at the University of Houston.