The gift will create the John M. O’Quinn Foundation Neurodegenerative Disorders Laboratory at Houston Methodist. Photo via houstonmethodist.org

Houston Methodist announced that it has received a $10 million gift from the The John M. O’Quinn Foundation to support research into neurological disorders, including Alzheimer’s disease, Parkinson’s disease and others.

The gift will create the John M. O’Quinn Foundation Neurodegenerative Disorders Laboratory at Houston Methodist, which will be led by Dr. Jun Li, who chairs the department of neurology at the Houston Methodist Neurological Institute. The NIH-backed researcher and his team will provide care, clinical trial opportunities and subspecialty programs through the lab, according to a release from Houston Methodist.

The funds will also be used to recruit neurodegenerative disorders specialists to lab by creating endowed research chairs, research fellowships and funding for pilot studies.

"Many neurodegenerative diseases are chronic and significantly impact the quality of life, causing pain, weakness, loss of ambulation and sensory loss,” Li says in a statement. “Our team is committed to working with patients to help make their lives better through treatment, and this generous gift fuels our determination to do even more and to help find therapies for these neurological diseases. This commitment from The John M. O’Quinn Foundation will support an interdisciplinary team of neurologists and neuroscientists to further explore treatment options.”

The O'Quinn Foundation has been a long-time supporter of the hospital group, according to Houston Methodist, and has had members of its organization suffer from neurodegenerative disorders.

"As our population continues to live longer, we believe it’s critical to help now, and we know Houston Methodist is best positioned with its renowned researchers and clinicians like Dr. Li to help those with neurodegenerative diseases to have a better quality of life, and ultimately, a treatment for these diseases that impact so many,” President and Executive Director of the foundation Robert C. Wilson III says in the statement.

Earlier this year, Houston Methodist also received a $1 million grant from Susan and William “Dub” Henning, Jr. to support Alzheimer’s research at the Nantz National Alzheimer Center at the hospital. It created the Susan and William Henning Jr. Neurodegenerative Research Endowment.

Meanwhile, over the summer, a Houston clinical-stage biotech that treats neurodegenerative diseases company went public. The company, Coya Therapeutics (Nasdaq: COYA), has developed a biologics therapy that prevents further spreading of neurodegenerative diseases by making regulatory T cells functional again and closed a $15.25 million IPO in January. Click here to learn more about the company's treatments for ALS and Alzheimer's.

Houston Methodist's Nantz National Alzheimer Center received a $1 million donation to continue research in neurodegenerative diseases. Photo via Houston Methodist

Houston hospital snags $1M to advance Alzheimer’s research

money moves

Thanks to a recent donation, Houston Methodist is setting up an endowment to support research in neurodegenerative diseases.

Susan and William “Dub” Henning, Jr. have committed to a $1 million gift to Houston Methodist to support Alzheimer’s research at the Nantz National Alzheimer Center at the hospital. This gift will be used to create the Susan and William Henning Jr. Neurodegenerative Research Endowment and in response, a NNAC family room will be named in memory of Dub’s parents, Lena and William Henning.

“Knowing the impact that Alzheimer’s can have not only on patients, but also on the immediate and extended family members experiencing the disease inspired us to support the work being done at the Nantz National Alzheimer Center,” says Dub Henning in a news release. “We want to give hope to families struggling with this disease and contribute to ultimately finding a cure.”

Every year, the NNAC — led by Joseph C. Masdeu — treats thousands of patients looking to prevent Alzheimer’s disease, slow memory loss progression, and improve their quality of life. In 2021 alone, the center provided more than 4,000 patient visits. The fresh funding will allow for Dr. Masdeu's research projects — including more than 26 current studies, 14 in clinical trials and 12 studies to clarify the nature of diseases causing dementia — to continue the important work.

“One of our clinical trials will determine the effects of exercise in preventing deposits of amyloid and tau, two of the proteins that accumulate in the brain of people living with Alzheimer’s disease, and we’re also exploring the role of proper sleep in disease development,” says Masdeu in the release. “Among other studies, we are collaborating with Baylor College of Medicine to define genetic and chemical factors predisposing to the accumulation of amyloid and tau in the brain of people at all stages of the Alzheimer’s spectrum.

"These promising developments would not be possible without the compassion and generosity of community supporters like the Henning family," he continues.

Susan and William “Dub” Henning, Jr. gave a $1 million gift to Houston Methodist. Photo courtesy of Houston Methodist

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston engineers develop breakthrough device to advance spinal cord treatment

future of health

A team of Rice University engineers has developed an implantable probe over a hundred times smaller than the width of a hair that aims to help develop better treatments for spinal cord disease and injury.

Detailed in a recent study published in Cell Reports, the probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement, according to a statement from Rice. The research was supported by the National Institutes of Health, Rice, the California-based Salk Institute for Biological Studies, and the philanthropic Mary K. Chapman Foundation based in Oklahoma.

The soft and flexible sensor was used to record neuronal activity in freely moving mice with high resolution for multiple days. Historically, tracking this level of activity has been difficult for researchers because the spinal cord and its neurons move so much during normal activity, according to the team.

“We developed a tiny sensor, spinalNET, that records the electrical activity of spinal neurons as the subject performs normal activity without any restraint,” Yu Wu, a research scientist at Rice and lead author of the study said in a statement. “Being able to extract such knowledge is a first but important step to develop cures for millions of people suffering from spinal cord diseases.”

The team says that before now the spinal cord has been considered a "black box." But the device has already helped the team uncover new findings about the body's rhythmic motor patterns, which drive walking, breathing and chewing.

Lan Luan (from left), Yu Wu, and Chong Xie are working on the breakthrough device. Photo by Jeff Fitlow/Rice University

"Some (spinal neurons) are strongly correlated with leg movement, but surprisingly, a lot of neurons have no obvious correlation with movement,” Wu said in the statement. “This indicates that the spinal circuit controlling rhythmic movement is more complicated than we thought.”

The team said they hope to explore these findings further and aim to use the technology for additional medical purposes.

“In addition to scientific insight, we believe that as the technology evolves, it has great potential as a medical device for people with spinal cord neurological disorders and injury,” Lan Luan, an associate professor of electrical and computer engineering at Rice and a corresponding author on the study, added in the statement.

Rice researchers have developed several implantable, minimally invasive devices to address health and mental health issues.

In the spring, the university announced that the United States Department of Defense had awarded a four-year, $7.8 million grant to the Texas Heart Institute and a Rice team led by co-investigator Yaxin Wang to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation.

That same month, the university shared news that Professor Jacob Robinson had published findings on minimally invasive bioelectronics for treating psychiatric conditions. The 9-millimeter device can deliver precise and programmable stimulation to the brain to help treat depression, obsessive-compulsive disorder and post-traumatic stress disorder.

Houston clean hydrogen startup to pilot tech with O&G co.

stay gold

Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

“This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

“With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

------

This article originally ran on EnergyCapital.

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes an e-commerce startup founder, an industrial biologist, and a cellular scientist.

Omair Tariq, co-founder and CEO of Cart.com

Omair Tariq of Cart.com joins the Houston Innovators Podcast to share his confidence in Houston as the right place to scale his unicorn. Photo via Cart.com

Houston-based Cart.com, which operates a multichannel commerce platform, has secured $105 million in debt refinancing from investment manager BlackRock.

The debt refinancing follows a recent $25 million series C extension round, bringing Cart.com’s series C total to $85 million. The scaleup’s valuation now stands at $1.2 billion, making it one of the few $1 billion-plus “unicorns” in the Houston area.

Cart.com was co-founded by CEO Omair Tariq in October 2020. Read more.

Nádia Skorupa Parachin, vice president of industrial biotechnology at Cemvita

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos. Read more.

Han Xiao, associate professor of chemistry at Rice University

The funds were awarded to Han Xiao, a chemist at Rice University.

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories. Xiao will use the five-year grant to advance his work on noncanonical amino acids.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement. Read more.