The gift will create the John M. O’Quinn Foundation Neurodegenerative Disorders Laboratory at Houston Methodist. Photo via houstonmethodist.org

Houston Methodist announced that it has received a $10 million gift from the The John M. O’Quinn Foundation to support research into neurological disorders, including Alzheimer’s disease, Parkinson’s disease and others.

The gift will create the John M. O’Quinn Foundation Neurodegenerative Disorders Laboratory at Houston Methodist, which will be led by Dr. Jun Li, who chairs the department of neurology at the Houston Methodist Neurological Institute. The NIH-backed researcher and his team will provide care, clinical trial opportunities and subspecialty programs through the lab, according to a release from Houston Methodist.

The funds will also be used to recruit neurodegenerative disorders specialists to lab by creating endowed research chairs, research fellowships and funding for pilot studies.

"Many neurodegenerative diseases are chronic and significantly impact the quality of life, causing pain, weakness, loss of ambulation and sensory loss,” Li says in a statement. “Our team is committed to working with patients to help make their lives better through treatment, and this generous gift fuels our determination to do even more and to help find therapies for these neurological diseases. This commitment from The John M. O’Quinn Foundation will support an interdisciplinary team of neurologists and neuroscientists to further explore treatment options.”

The O'Quinn Foundation has been a long-time supporter of the hospital group, according to Houston Methodist, and has had members of its organization suffer from neurodegenerative disorders.

"As our population continues to live longer, we believe it’s critical to help now, and we know Houston Methodist is best positioned with its renowned researchers and clinicians like Dr. Li to help those with neurodegenerative diseases to have a better quality of life, and ultimately, a treatment for these diseases that impact so many,” President and Executive Director of the foundation Robert C. Wilson III says in the statement.

Earlier this year, Houston Methodist also received a $1 million grant from Susan and William “Dub” Henning, Jr. to support Alzheimer’s research at the Nantz National Alzheimer Center at the hospital. It created the Susan and William Henning Jr. Neurodegenerative Research Endowment.

Meanwhile, over the summer, a Houston clinical-stage biotech that treats neurodegenerative diseases company went public. The company, Coya Therapeutics (Nasdaq: COYA), has developed a biologics therapy that prevents further spreading of neurodegenerative diseases by making regulatory T cells functional again and closed a $15.25 million IPO in January. Click here to learn more about the company's treatments for ALS and Alzheimer's.

Houston Methodist's Nantz National Alzheimer Center received a $1 million donation to continue research in neurodegenerative diseases. Photo via Houston Methodist

Houston hospital snags $1M to advance Alzheimer’s research

money moves

Thanks to a recent donation, Houston Methodist is setting up an endowment to support research in neurodegenerative diseases.

Susan and William “Dub” Henning, Jr. have committed to a $1 million gift to Houston Methodist to support Alzheimer’s research at the Nantz National Alzheimer Center at the hospital. This gift will be used to create the Susan and William Henning Jr. Neurodegenerative Research Endowment and in response, a NNAC family room will be named in memory of Dub’s parents, Lena and William Henning.

“Knowing the impact that Alzheimer’s can have not only on patients, but also on the immediate and extended family members experiencing the disease inspired us to support the work being done at the Nantz National Alzheimer Center,” says Dub Henning in a news release. “We want to give hope to families struggling with this disease and contribute to ultimately finding a cure.”

Every year, the NNAC — led by Joseph C. Masdeu — treats thousands of patients looking to prevent Alzheimer’s disease, slow memory loss progression, and improve their quality of life. In 2021 alone, the center provided more than 4,000 patient visits. The fresh funding will allow for Dr. Masdeu's research projects — including more than 26 current studies, 14 in clinical trials and 12 studies to clarify the nature of diseases causing dementia — to continue the important work.

“One of our clinical trials will determine the effects of exercise in preventing deposits of amyloid and tau, two of the proteins that accumulate in the brain of people living with Alzheimer’s disease, and we’re also exploring the role of proper sleep in disease development,” says Masdeu in the release. “Among other studies, we are collaborating with Baylor College of Medicine to define genetic and chemical factors predisposing to the accumulation of amyloid and tau in the brain of people at all stages of the Alzheimer’s spectrum.

"These promising developments would not be possible without the compassion and generosity of community supporters like the Henning family," he continues.

Susan and William “Dub” Henning, Jr. gave a $1 million gift to Houston Methodist. Photo courtesy of Houston Methodist

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

MD Anderson makes AI partnership to advance precision oncology

AI Oncology

Few experts will disagree that data-driven medicine is one of the most certain ways forward for our health. However, actually adopting it comes at a steep curve. But what if using the technology were democratized?

This is the question that SOPHiA GENETICS has been seeking to answer since 2011 with its universal AI platform, SOPHiA DDM. The cloud-native system analyzes and interprets complex health care data across technologies and institutions, allowing hospitals and clinicians to gain clinically actionable insights faster and at scale.

The University of Texas MD Anderson Cancer Center has just announced its official collaboration with SOPHiA GENETICS to accelerate breakthroughs in precision oncology. Together, they are developing a novel sequencing oncology test, as well as creating several programs targeted at the research and development of additional technology.

That technology will allow the hospital to develop new ways to chart the growth and changes of tumors in real time, pick the best clinical trials and medications for patients and make genomic testing more reliable. Shashikant Kulkarni, deputy division head for Molecular Pathology, and Dr. J. Bryan, assistant professor, will lead the collaboration on MD Anderson’s end.

“Cancer research has evolved rapidly, and we have more health data available than ever before. Our collaboration with SOPHiA GENETICS reflects how our lab is evolving and integrating advanced analytics and AI to better interpret complex molecular information,” Dr. Donna Hansel, division head of Pathology and Laboratory Medicine at MD Anderson, said in a press release. “This collaboration will expand our ability to translate high-dimensional data into insights that can meaningfully advance research and precision oncology.”

SOPHiA GENETICS is based in Switzerland and France, and has its U.S. offices in Boston.

“This collaboration with MD Anderson amplifies our shared ambition to push the boundaries of what is possible in cancer research,” Dr. Philippe Menu, chief product officer and chief medical officer at SOPHiA GENETICS, added in the release. “With SOPHiA DDM as a unifying analytical layer, we are enabling new discoveries, accelerating breakthroughs in precision oncology and, most importantly, enabling patients around the globe to benefit from these innovations by bringing leading technologies to all geographies quickly and at scale.”

Houston company plans lunar mission to test clean energy resource

lunar power

Houston-based natural resource and lunar development company Black Moon Energy Corporation (BMEC) announced that it is planning a robotic mission to the surface of the moon within the next five years.

The company has engaged NASA’s Jet Propulsion Laboratory (JPL) and Caltech to carry out the mission’s robotic systems, scientific instrumentation, data acquisition and mission operations. Black Moon will lead mission management, resource-assessment strategy and large-scale operations planning.

The goal of the year-long expedition will be to gather data and perform operations to determine the feasibility of a lunar Helium-3 supply chain. Helium-3 is abundant on the surface of the moon, but extremely rare on Earth. BMEC believes it could be a solution to the world's accelerating energy challenges.

Helium-3 fusion releases 4 million times more energy than the combustion of fossil fuels and four times more energy than traditional nuclear fission in a “clean” manner with no primary radioactive products or environmental issues, according to BMEC. Additionally, the company estimates that there is enough lunar Helium-3 to power humanity for thousands of years.

"By combining Black Moon's expertise in resource development with JPL and Caltech's renowned scientific and engineering capabilities, we are building the knowledge base required to power a new era of clean, abundant, and affordable energy for the entire planet," David Warden, CEO of BMEC, said in a news release.

The company says that information gathered from the planned lunar mission will support potential applications in fusion power generation, national security systems, quantum computing, radiation detection, medical imaging and cryogenic technologies.

Black Moon Energy was founded in 2022 by David Warden, Leroy Chiao, Peter Jones and Dan Warden. Chiao served as a NASA astronaut for 15 years. The other founders have held positions at Rice University, Schlumberger, BP and other major energy space organizations.

Houston co. makes breakthrough in clean carbon fiber manufacturing

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.