The two new awardees are LymphGuide and HEXASpec, which were selected from 26 applications. Each company received an $100,000 grant. Photo courtesy of The Ion

Rice University has doled out another batch of grants from its program supporting lab-based innovations.

The One Small Step Grant, which was announced a year ago and gave out its first grants in February, was established to fund Rice-founded, lab-stage projects on their path to commercialization

“The One Small Step Grant invites applications from students and faculty who are tackling some of the world’s most pressing challenges and preparing to bring their innovative technologies to market,” Nafisa Istami, innovation manager at Rice, says in a news release. “We received highly competitive applications from across campus, truly showcasing the growing momentum of technology innovation happening at Rice.”

The two new awardees are LymphGuide and HEXASpec, which were selected from 26 applications. Each company received an $100,000 grant.

LymphGuide was developed by Martha Fowler in Rice professor Omid Veiseh’s lab. The hydrogel platform is a customizable alginate that's combined with an engineered cell therapy to aid in lymphatic cell regrowth, initially targeting the treatment and prevention of lymphedema.

"We are profoundly grateful to the One Small Step Grant for supporting our vision to treat lymphedema,” says Martha Fowler, cofounder of LymphGuide. “This funding will propel our biotechnology into pre-clinical evaluation to make a meaningful impact in scientific research and for people suffering from lymphatic disease.” Fowler is also an active contributor in the Rice entrepreneurship ecosystem and an Liu Idea Lab of Innovation and Entrepreneurship Innovation Fellows Cohort 2 member.

Led by by Tianshu Zhai in Rice professor Jun Lou’s lab, HEXASpec develops inorganic fillers and molding compounds for next-generation chip packaging. Zhai is also one of the Liu Idea Lab of Innovation and Entrepreneurship Innovation Fellows.

“We are thrilled to receive the One Small Step Grant from Rice Innovation,” says Tianshu Zhai, cofounder of HEXASpec. “This support is crucial for advancing HEXASpec and signifies the strong backing of the Rice entrepreneurship community. We’re grateful for the opportunity to develop our technology with such robust support.”

The next round of grant opportunities will open next month with an online application process.

“The One Small Step Grant program is a demonstration of Rice’s commitment to supporting the commercialization of Rice technologies,” says Adrian Trömel, associate vice president of Innovation Strategy and Investments. “Each cycle further highlights the impactful work of Rice students and faculty to solve global problems across industries.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University lands $18M to revolutionize lymphatic disease detection

fresh funding

An arm of the U.S. Department of Health and Human Services has awarded $18 million to scientists at Rice University for research that has the potential to revolutionize how lymphatic diseases are detected and help increase survivability.

The lymphatic system is the network of vessels all over the body that help eliminate waste, absorb fat and maintain fluid balance. Diseases in this system are often difficult to detect early due to the small size of the vessels and the invasiveness of biopsy testing. Though survival rates of lymph disease have skyrocketed in the United States over the last five years, it still claims around 200,000 people in the country annually.

Early detection of complex lymphatic anomalies (CLAs) and lymphedema is essential in increasing successful treatment rates. That’s where Rice University’s SynthX Center, directed by Han Xiao and Lei Li, an assistant professor of electrical and computer engineering, comes in.

Aided by researchers from Texas Children’s Hospital, Baylor College of Medicine, the University of Texas at Dallas and the University of Texas Southwestern Medical Center, the center is pioneering two technologies: the Visual Imaging System for Tracing and Analyzing Lymphatics with Photoacoustics (VISTA-LYMPH) and Digital Plasmonic Nanobubble Detection for Protein (DIAMOND-P).

Simply put, VISTA-LYMPH uses photoacoustic tomography (PAT), a combination of light and sound, to more accurately map the tiny vessels of the lymphatic system. The process is more effective than diagnostic tools that use only light or sound, independent of one another. The research award is through the Advanced Research Projects Agency for Health (ARPA-H) Lymphatic Imaging, Genomics and pHenotyping Technologies (LIGHT) program, part of the U.S. HHS, which saw the potential of VISTA-LYMPH in animal tests that produced finely detailed diagnostic maps.

“Thanks to ARPA-H’s award, we will build the most advanced PAT system to image the body’s lymphatic network with unprecedented resolution and speed, enabling earlier and more accurate diagnosis,” Li said in a news release.

Meanwhile, DIAMOND-P could replace the older, less exact immunoassay. It uses laser-heated vapors of plasmonic nanoparticles to detect viruses without having to separate or amplify, and at room temperature, greatly simplifying the process. This is an important part of greater diagnosis because even with VISTA-LYMPH’s greater imaging accuracy, many lymphatic diseases still do not appear. Detecting biological markers is still necessary.

According to Rice, the efforts will help address lymphatic disorders, including Gorham-Stout disease, kaposiform lymphangiomatosis and generalized lymphatic anomaly. They also could help manage conditions associated with lymphatic dysfunction, including cancer metastasis, cardiovascular disease and neurodegeneration.

“By validating VISTA-LYMPH and DIAMOND-P in both preclinical and clinical settings, the team aims to establish a comprehensive diagnostic pipeline for lymphatic diseases and potentially beyond,” Xiao added in the release.

The ARPA-H award funds the project for up to five years.

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.