A Houston expert shares reasons to swap screen time for extended reality. Photo via Getty Images

What does your reality look like? Look around you. What do you see? It would be safe to say (almost guarantee) that you are looking at a screen right now, correct? We are consumers of information and use screens to access, view, and create information.

But why are we spending so much of our time looking at screens?

One poll stated that the average adult will spend 34 years of their lives looking at screens. It almost feels that screens (TV, laptop, or phone) have become so ubiquitous in everyday life that they have blended into our reality and are just ‘there’. Do you think the inventor of the TV, John Logie Baird, ever fully grasped how much the fabric of society would revolve around his invention? Time and time again, incredible disruptions have always come from breaking the ‘norm’ and given the vast level of integration of screens into our everyday reality, this ‘norm’ feels long overdue for innovation. This is where the world of augmented reality and spatial computing comes into play.

The COVID-19 pandemic saw an unprecedented shift to even more screen time and interactions using remote video communication platforms. It was also around this time that wireless virtual reality headsets were, for the first time ever, economically accessible to the consumer due to the large push of one multinational corporation. Fast forward to 2023, there are even more companies beginning to enter the market with new extended reality (XR) headsets (i.e. virtual, mixed, and augmented reality) that offer spatial computing – the ability for computers to blend into the physical worlds (amongst other things).

Some of our innovation engineering activities at the Houston Methodist Institute for Technology, Innovation, and Education (MITIE) have focused on specific use cases of XR in surgical education and training. One of our projects, the MITIEverse, is a VR-based platform focused on creating the first-ever metaverse for medical innovation. It is a fully immersive VR environment that allows the user to view 3D-rendered patient anatomies whilst watching the actual patient procedure, even offering the ability to meet the surgeon who performed the operation. It also affords the ability to give a ‘Grand Rounds’ style presentation to an audience of 50 participants.

We have looked at using augmented reality to control robotic-assisted surgery platforms. In our proof-of-concept prototype, we successfully demonstrated the manipulation of guide wires and catheters using nothing more than an augmented reality headset, illustrating the possibility of surgeons performing surgery at a distance. Houston Methodist is dedicated to transforming healthcare using the latest innovative technology including XR. The question we now need to ask – is society ready and willing to replace screens with XR headsets?

To learn more about our XR initiatives and other Houston’s cross-industry innovation collaborations, attend Pumps & Pipes Annual Event 2023, Problem Xchange: Where Solutions Converge next month at The Ion.

------

Stuart Corr is the director of Innovation Systems Engineering at Houston Methodist and executive director of Pumps & Pipes.

Houston Methodist's new MITIEverse app takes users into the metaverse to learn from professionals across the globe. Image courtesy of Houston Methodist

Houston hospital joins the metaverse with new platform

now online

Houston Methodist has launched a platform that is taking medical and scientific experts and students into the metaverse.

The MITIEverse, a new app focused on health care education and training, provides hands-on practice, remote assistance from experienced clinicians, and more. The app — named for the Houston Methodist Institute for Technology, Innovation and Education, aka MITIE — was created in partnership with FundamentalVR and takes users into virtual showcase rooms, surgical simulations, and lectures from Houston Methodist faculty, as well as collaborators from across the world.

“This new app brings the hands-on education and training MITIE is known for to a new virtual audience. It could be a first step toward building out a medical metaverse,” says Stuart Corr, inventor of the MITIEverse and director of innovation systems engineering at Houston Methodist, in a news release.

Image courtesy of Houston Methodist

The hospital system's DeBakey Heart and Vascular Center has created a virtual showcase room on the app, and users can view Houston Methodist faculty performing real surgeries and then interact with 3D human models.

"We view the MITIEverse as a paradigm-shifting platform that will offer new experiences in how we educate, train, and interact with the health community,” says Alan Lumsden, M.D., medical director of Houston Methodist DeBakey Heart and Vascular Center, in the release.

“It essentially democratizes access to health care educators and innovators by breaking down physical barriers. There’s no need to travel thousands of miles to attend a conference when you can patch into the MITIEverse," he continues.

Image courtesy of Houston Methodist

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice Business Plan Competition names startup teams for 2026 event

ready, set, pitch

The Rice Alliance for Technology and Entrepreneurship has announced the 42 student-led teams that will compete in the 26th annual Rice Business Plan Competition this spring.

The highly competitive event, known as one of the world’s largest and richest intercollegiate student startup challenges, will take place April 9-11 on Rice's campus and at the Ion. Teams in this year's competition represent 39 universities from four countries, including one team from Rice and two from the University of Texas at Austin.

Graduate student-led teams from colleges or universities around the world will present their plans before more than 300 angel, venture capital and corporate investors to compete for more than $1 million in prizes. Top teams were awarded $2 million in investment and cash prizes at the 2025 event.

The 2026 invitees include:

  • Alchemll, University of Tennessee - Knoxville
  • Altaris MedTech, University of Arkansas
  • Armada Therapeutics, Dartmouth College
  • Arrow Analytics, Texas A&M University
  • Aura Life Science, Northwestern University
  • BeamFeed, City University of New York
  • BiliRoo, University of Michigan
  • BioLegacy, Seattle University
  • BlueHealer, Johns Hopkins University
  • BRCĒ, Michigan State University
  • ChargeBay, University of Miami
  • Cocoa Potash, Case Western Reserve
  • Cosnetix, Yale University
  • Cottage Core, Kent State University
  • Crack'd Up, University of Wisconsin - Madison
  • Curbon, Princeton University
  • DialySafe, Rice University
  • Foregger Energy Systems, Babson College
  • Forge, University of California, Berkeley
  • Grapheon, University of Pittsburgh
  • GUIDEAIR Labs, University of Washington
  • Hydrastack, University of Chicago
  • Imagine Devices, University of Texas at Austin
  • Innowind Energy Solutions, University of Waterloo (Canada)
  • JanuTech, University of Washington
  • Laetech, University of Toronto (Canada)
  • Lectra Technologies, MIT
  • Legion Platforms, Arizona State University
  • Lucy, University of Pennsylvania
  • NerView Surgical, McMaster University (Canada)
  • Panoptica Technologies, Georgia Tech University
  • PowerHouse, MIT
  • Quantum Power Systems, University of Texas at Austin
  • Routora, University of Notre Dame
  • Sentivity.ai, Virginia Tech
  • Shinra Energy, Harvard University
  • Solid Air Dynamics, RWTH Aachen (Germany)
  • Spine Biotics, University of North Carolina - Chapel Hill
  • The Good Company, Michigan Tech
  • UNCHAIN, Lehigh University
  • VivoFlux, University of Rochester
  • Vocadian, University of Oxford (UK)

This year's group joins more than 910 RBPC alums that have raised more than $6.9 billion in capital, according to Rice.

The University of Michigan's Intero Biosystems, which is developing the first stem cell-driven human “mini gut,” took home the largest investment sum of $902,000 last year. The company also claimed the first-place prize.

Houston suburb ranks as No. 3 best place to retire in Texas

Rankings & Reports

Texas retirees on the hunt for the right place to settle down and enjoy their blissful retirement years will find their haven in the Houston suburb of Pasadena, which just ranked as the third-best city to retire statewide.

A new study conducted by the research team at RetirementLiving.com, "The Best Cities to Retire in Texas," compared the affordability, safety, livability, and healthcare access for seniors across 31 Texas cities with at least 90,000 residents.

Wichita Falls, about 140 miles northwest of Dallas, claimed the top spot as the No. 1 best place to retire in Texas.

The senior living experts said Pasadena has the best healthcare access for seniors in the entire state, and it ranked as the No. 8 most affordable city on the list.

"Taking care of one’s health can be stressful for seniors," the report said. "Harris County, where [Pasadena is] located, has 281.1 primary care physicians per 1,000 seniors — that’s almost 50-fold the statewide ratio of 5.9 per 1,000."

Pasadena ranked 10th overall for its livability, and ranked 25th for safety, the report added.

Meanwhile, Houston proper ranked as the No. 31 best place to retire in Texas, but its livability score was the 7th best statewide.

Seven of the Lone Star State's top 10 best retirement locales are located in the Dallas-Fort Worth Metroplex: Carrollton (No. 2), Plano (No. 4), Garland (No. 5), Richardson (No. 6), Arlington (No. 7), Grand Prairie (No. 8), and Irving (No. 9). McAllen, a South Texas border town, rounded out the top 10.

RetirementLiving said Carrollton has one of the lowest property and violent crime rates per capita in Texas, and it ranked as the No. 5 safest city on the list. About 17 percent of the city's population is aged 65 or older, which is higher than the statewide average of just 14 percent.

The top 10 best place to retire in Texas in 2026 are:

  • No. 1 – Wichita Falls
  • No. 2 – Carrollton
  • No. 3 – Pasadena
  • No. 4 – Plano
  • No. 5 – Garland
  • No. 6 – Richardson
  • No. 7 – Arlington
  • No. 8 – Grand Prairie
  • No. 9 – Irving
  • No. 10 – McAllen
---

This article originally appeared on CultureMap.com.

Rice University lands $18M to revolutionize lymphatic disease detection

fresh funding

An arm of the U.S. Department of Health and Human Services has awarded $18 million to scientists at Rice University for research that has the potential to revolutionize how lymphatic diseases are detected and help increase survivability.

The lymphatic system is the network of vessels all over the body that help eliminate waste, absorb fat and maintain fluid balance. Diseases in this system are often difficult to detect early due to the small size of the vessels and the invasiveness of biopsy testing. Though survival rates of lymph disease have skyrocketed in the United States over the last five years, it still claims around 200,000 people in the country annually.

Early detection of complex lymphatic anomalies (CLAs) and lymphedema is essential in increasing successful treatment rates. That’s where Rice University’s SynthX Center, directed by Han Xiao and Lei Li, an assistant professor of electrical and computer engineering, comes in.

Aided by researchers from Texas Children’s Hospital, Baylor College of Medicine, the University of Texas at Dallas and the University of Texas Southwestern Medical Center, the center is pioneering two technologies: the Visual Imaging System for Tracing and Analyzing Lymphatics with Photoacoustics (VISTA-LYMPH) and Digital Plasmonic Nanobubble Detection for Protein (DIAMOND-P).

Simply put, VISTA-LYMPH uses photoacoustic tomography (PAT), a combination of light and sound, to more accurately map the tiny vessels of the lymphatic system. The process is more effective than diagnostic tools that use only light or sound, independent of one another. The research award is through the Advanced Research Projects Agency for Health (ARPA-H) Lymphatic Imaging, Genomics and pHenotyping Technologies (LIGHT) program, part of the U.S. HHS, which saw the potential of VISTA-LYMPH in animal tests that produced finely detailed diagnostic maps.

“Thanks to ARPA-H’s award, we will build the most advanced PAT system to image the body’s lymphatic network with unprecedented resolution and speed, enabling earlier and more accurate diagnosis,” Li said in a news release.

Meanwhile, DIAMOND-P could replace the older, less exact immunoassay. It uses laser-heated vapors of plasmonic nanoparticles to detect viruses without having to separate or amplify, and at room temperature, greatly simplifying the process. This is an important part of greater diagnosis because even with VISTA-LYMPH’s greater imaging accuracy, many lymphatic diseases still do not appear. Detecting biological markers is still necessary.

According to Rice, the efforts will help address lymphatic disorders, including Gorham-Stout disease, kaposiform lymphangiomatosis and generalized lymphatic anomaly. They also could help manage conditions associated with lymphatic dysfunction, including cancer metastasis, cardiovascular disease and neurodegeneration.

“By validating VISTA-LYMPH and DIAMOND-P in both preclinical and clinical settings, the team aims to establish a comprehensive diagnostic pipeline for lymphatic diseases and potentially beyond,” Xiao added in the release.

The ARPA-H award funds the project for up to five years.