A Houston expert shares reasons to swap screen time for extended reality. Photo via Getty Images

What does your reality look like? Look around you. What do you see? It would be safe to say (almost guarantee) that you are looking at a screen right now, correct? We are consumers of information and use screens to access, view, and create information.

But why are we spending so much of our time looking at screens?

One poll stated that the average adult will spend 34 years of their lives looking at screens. It almost feels that screens (TV, laptop, or phone) have become so ubiquitous in everyday life that they have blended into our reality and are just ‘there’. Do you think the inventor of the TV, John Logie Baird, ever fully grasped how much the fabric of society would revolve around his invention? Time and time again, incredible disruptions have always come from breaking the ‘norm’ and given the vast level of integration of screens into our everyday reality, this ‘norm’ feels long overdue for innovation. This is where the world of augmented reality and spatial computing comes into play.

The COVID-19 pandemic saw an unprecedented shift to even more screen time and interactions using remote video communication platforms. It was also around this time that wireless virtual reality headsets were, for the first time ever, economically accessible to the consumer due to the large push of one multinational corporation. Fast forward to 2023, there are even more companies beginning to enter the market with new extended reality (XR) headsets (i.e. virtual, mixed, and augmented reality) that offer spatial computing – the ability for computers to blend into the physical worlds (amongst other things).

Some of our innovation engineering activities at the Houston Methodist Institute for Technology, Innovation, and Education (MITIE) have focused on specific use cases of XR in surgical education and training. One of our projects, the MITIEverse, is a VR-based platform focused on creating the first-ever metaverse for medical innovation. It is a fully immersive VR environment that allows the user to view 3D-rendered patient anatomies whilst watching the actual patient procedure, even offering the ability to meet the surgeon who performed the operation. It also affords the ability to give a ‘Grand Rounds’ style presentation to an audience of 50 participants.

We have looked at using augmented reality to control robotic-assisted surgery platforms. In our proof-of-concept prototype, we successfully demonstrated the manipulation of guide wires and catheters using nothing more than an augmented reality headset, illustrating the possibility of surgeons performing surgery at a distance. Houston Methodist is dedicated to transforming healthcare using the latest innovative technology including XR. The question we now need to ask – is society ready and willing to replace screens with XR headsets?

To learn more about our XR initiatives and other Houston’s cross-industry innovation collaborations, attend Pumps & Pipes Annual Event 2023, Problem Xchange: Where Solutions Converge next month at The Ion.

------

Stuart Corr is the director of Innovation Systems Engineering at Houston Methodist and executive director of Pumps & Pipes.

Houston Methodist's new MITIEverse app takes users into the metaverse to learn from professionals across the globe. Image courtesy of Houston Methodist

Houston hospital joins the metaverse with new platform

now online

Houston Methodist has launched a platform that is taking medical and scientific experts and students into the metaverse.

The MITIEverse, a new app focused on health care education and training, provides hands-on practice, remote assistance from experienced clinicians, and more. The app — named for the Houston Methodist Institute for Technology, Innovation and Education, aka MITIE — was created in partnership with FundamentalVR and takes users into virtual showcase rooms, surgical simulations, and lectures from Houston Methodist faculty, as well as collaborators from across the world.

“This new app brings the hands-on education and training MITIE is known for to a new virtual audience. It could be a first step toward building out a medical metaverse,” says Stuart Corr, inventor of the MITIEverse and director of innovation systems engineering at Houston Methodist, in a news release.

Image courtesy of Houston Methodist

The hospital system's DeBakey Heart and Vascular Center has created a virtual showcase room on the app, and users can view Houston Methodist faculty performing real surgeries and then interact with 3D human models.

"We view the MITIEverse as a paradigm-shifting platform that will offer new experiences in how we educate, train, and interact with the health community,” says Alan Lumsden, M.D., medical director of Houston Methodist DeBakey Heart and Vascular Center, in the release.

“It essentially democratizes access to health care educators and innovators by breaking down physical barriers. There’s no need to travel thousands of miles to attend a conference when you can patch into the MITIEverse," he continues.

Image courtesy of Houston Methodist

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.

Houston to become 'global leader in brain health' and more innovation news

Top Topics

Editor's note: The most-read Houston innovation news this month is centered around brain health, from the launch of Project Metis to Rice''s new Amyloid Mechanism and Disease Center. Here are the five most popular InnovationMap stories from December 1-15, 2025:

1. Houston institutions launch Project Metis to position region as global leader in brain health

The Rice Brain Institute, UTMB's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department will lead Project Metis. Photo via Unsplash.

Leaders in Houston's health care and innovation sectors have joined the Center for Houston’s Future to launch an initiative that aims to make the Greater Houston Area "the global leader of brain health." The multi-year Project Metis, named after the Greek goddess of wisdom and deep thought, will be led by the newly formed Rice Brain Institute, The University of Texas Medical Branch's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department. The initiative comes on the heels of Texas voters overwhelmingly approving a ballot measure to launch the $3 billion, state-funded Dementia Prevention and Research Institute of Texas (DPRIT). Continue reading.

2.Rice University researchers unveil new model that could sharpen MRI scans

New findings from a team of Rice University researchers could enhance MRI clarity. Photo via Unsplash.

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI. In a study published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Continue reading.

3. Rice University launches new center to study roots of Alzheimer’s and Parkinson’s

The new Amyloid Mechanism and Disease Center will serve as the neuroscience branch of Rice’s Brain Institute. Photo via Unsplash.

Rice University has launched its new Amyloid Mechanism and Disease Center, which aims to uncover the molecular origins of Alzheimer’s, Parkinson’s and other amyloid-related diseases. The center will bring together Rice faculty in chemistry, biophysics, cell biology and biochemistry to study how protein aggregates called amyloids form, spread and harm brain cells. It will serve as the neuroscience branch of the Rice Brain Institute, which was also recently established. Continue reading.

4. Baylor center receives $10M NIH grant to continue rare disease research

BCM's Center for Precision Medicine Models has received funding that will allow it to study more complex diseases. Photo via Getty Images

Baylor College of Medicine’s Center for Precision Medicine Models has received a $10 million, five-year grant from the National Institutes of Health that will allow it to continue its work studying rare genetic diseases. The Center for Precision Medicine Models creates customized cell, fly and mouse models that mimic specific genetic variations found in patients, helping scientists to better understand how genetic changes cause disease and explore potential treatments. Continue reading.

5. Luxury transportation startup connects Houston with Austin and San Antonio

Shutto is a new option for Houston commuters. Photo courtesy of Shutto

Houston business and leisure travelers have a luxe new way to hop between Texas cities. Transportation startup Shutto has launched luxury van service connecting San Antonio, Austin, and Houston, offering travelers a comfortable alternative to flying or long-haul rideshare. Continue reading.

Texas falls to bottom of national list for AI-related job openings

jobs report

For all the hoopla over AI in the American workforce, Texas’ share of AI-related job openings falls short of every state except Pennsylvania and Florida.

A study by Unit4, a provider of cloud-based enterprise resource planning (ERP) software for businesses, puts Texas at No. 49 among the states with the highest share of AI-focused jobs. Just 9.39 percent of Texas job postings examined by Unit4 mentioned AI.

Behind Texas are No. 49 Pennsylvania (9.24 percent of jobs related to AI) and No. 50 Florida (9.04 percent). One spot ahead of Texas, at No. 47, is California (9.56 percent).

Unit4 notes that Texas’ and Florida’s low rankings show “AI hiring concentration isn’t necessarily tied to population size or GDP.”

“For years, California, Texas, and New York dominated tech hiring, but that’s changing fast. High living costs, remote work culture, and the democratization of AI tools mean smaller states can now compete,” Unit4 spokesperson Mark Baars said in a release.

The No. 1 state is Wyoming, where 20.38 percent of job openings were related to AI. The Cowboy State was followed by Vermont at No. 2 (20.34 percent) and Rhode Island at No. 3 (19.74 percent).

“A company in Wyoming can hire an AI engineer from anywhere, and startups in Vermont can build powerful AI systems without being based in Silicon Valley,” Baars added.

The study analyzed LinkedIn job postings across all 50 states to determine which ones were leading in AI employment. Unit4 came up with percentages by dividing the total number of job postings in a state by the total number of AI-related job postings.

Experts suggest that while states like Texas, California and Florida “have a vast number of total job postings, the sheer volume of non-AI jobs dilutes their AI concentration ratio,” according to Unit4. “Moreover, many major tech firms headquartered in California are outsourcing AI roles to smaller, more affordable markets, creating a redistribution of AI employment opportunities.”