The work is "poised to revolutionize our understanding of fundamental physics," according to Rice University. Photo courtesy of Rice University

A team of Rice University physicists has been awarded a prestigious grant from the Department of Energy's Office of Nuclear Physics for their work in high-energy nuclear physics and research into a new state of matter.

The five-year $15.5 million grant will go towards Rice physics and astronomy professor Wei Li's discoveries focused on the Compact Muon Solenoid (CMS), a large, general-purpose particle physics detector built on the Large Hadron Collider (LHC) at CERN, a European organization for nuclear research in France and Switzerland. The work is "poised to revolutionize our understanding of fundamental physics," according to a statement from Rice.

Li's team will work to develop an ultra-fast silicon timing detector, known as the endcap timing layer (ETL), that will provide upgrades to the CMS detector. The ETl is expected to have a time resolution of 30 picoseconds per particle, which will allow for more precise time-of-flight particle identification.

The Rice team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas. Photo via Rice.edu

This will also help boost the performance of the High-Luminosity Large Hadron Collider (HL-LHC), which is scheduled to launch at CERN in 2029, allowing it to operate at about 10 times the luminosity than originally planned. The ETL also has applications for other colliders apart from the LHC, including the DOE’s electron-ion collider at the Brookhaven National Laboratory in Long Island, New York.

“The ETL will enable breakthrough science in the area of heavy ion collisions, allowing us to delve into the properties of a remarkable new state of matter called the quark-gluon plasma,” Li explained in a statement. “This, in turn, offers invaluable insights into the strong nuclear force that binds particles at the core of matter.”

The ETL is also expected to aid in other areas of physics, including the search for the Higgs particle and understanding the makeup of dark matter.

Li is joined on this work by co-principal investigator Frank Geurts and researchers Nicole Lewis and Mike Matveev from Rice. The team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas.

Last year, fellow Rice physicist Qimiao Si, a theoretical quantum physicist, earned the prestigious Vannevar Bush Faculty Fellowship grant. The five-year fellowship, with up to $3 million in funding, will go towards his work to establish an unconventional approach to create and control topological states of matter, which plays an important role in materials research and quantum computing.

Meanwhile, the DOE recently tapped three Houston universities to compete in its annual startup competition focused on "high-potential energy technologies,” including one team from Rice.

------

This article originally ran on EnergyCapital.

An annual ranking recognized Rice University again — but the Houston school ranked a tad lower this year. Photo courtesy of Rice

Report: Rice University again ranks among the top schools in nation

hooting in Houston

Rice University has earned yet another accolade worth hooting about.

Niche, an education review and ranking website, has named Rice the ninth best college in the U.S., down from No. 6 last year. The Houston university receives an A+ in nine of the 12 ranking categories, including academics, diversity, and value. It gets an A for the party scene, a B+ for athletics, and a B for safety.

“We’re proud that Niche once again rates Rice not only one of the nation’s top universities, but also one of the nation’s best college values,” university President Reginald DesRoches said in 2022. “This is especially gratifying because Niche reflects the opinions of students and parents who know firsthand what outstanding education opportunities Rice continues to offer.”

Rice regularly ranks highly on lists of the best colleges and universities in the country, including those published by Niche, Forbes, and U.S. News & World Report.

“Rice is an awesome place. I went to Rice because I wanted professors who actually wanted to see their students succeed, and I can confidently say that’s what I found at Rice,” a student wrote in a Niche review. “The classes are thorough but the tests are very reasonable and focus on the material we learned in class.”

Topping Niche’s national list is Yale University, followed by Stanford University, the Massachusetts Institute of Technology, Harvard University, Princeton University, Columbia University, the University of Pennsylvania, and Dartmouth College.

Rice comes in at No. 12 on Niche’s list of the “best value colleges” in the U.S. and ranks first among the best colleges in Texas. Here are the top 10 Texas schools, including the eighth-ranked University of Houston:

1. Rice University
2. University of Texas at Austin
3. Texas A&M University (College Station)
4. Trinity University (San Antonio)
5. Southern Methodist University (University Park)
6. Texas Christian University (Fort Worth)
7. Texas Tech University (Lubbock)
8. University of Houston
9. University of Texas Permian Basin (Odessa)
10. Baylor University (Waco)

Other Houston-area schools in the Texas ranking are:

  • University of Houston – Clear Lake (No. 13)
  • University of St. Thomas (No. 26)
  • University of Houston – Downtown (No. 39)
  • Prairie View A&M University (No. 43)

“Choosing where to go to college is easily one of the most significant — and expensive — decisions of a person’s life. Niche’s mission is to ensure that every college-bound student has access to easy, transparent and free resources … to help them find their best fit,” Luke Skurman, founder and CEO of Niche, says in a news release.

When it comes to promoting social causes, corporations have to find a way to appear genuine over posturing. Photo via Getty Images

Navigating corporate challenge of genuinely supporting social causes, per Rice research

Houston Voices

It is becoming more and more common for companies to promote social causes such as human rights, LGBTQ+ rights, racial justice, and environmental sustainability. But organizations face a tricky dilemma when expressing commitments to helping address social issues: Stakeholders may interpret their words and deeds as shallow rhetoric or insincere posturing.

Terms like “greenwashing” (regarding environmentalism) or “pinkwashing” (regarding LGBTQ+ rights) are on the rise, and they signal heightened suspicions around companies doing something with ostensible objectives of bringing in positive social change.

It's critical for researchers and business leaders to investigate this duality of audience perception: actual virtue versus virtue-signaling. In an age of social media and polarization, consumers are increasingly likely to wonder: Does this company have ulterior motives? Are they trying to cover for their own wrongdoing? Are they actually walking the walk, or are they merely talking the talk?

When can companies avoid such suspicion of being pro-social imposters?

Minjae Kim of Rice Business and Ezra W. Zuckerman Sivan of MIT Sloan School of Management have taken a close look at the conditions under which upholding social norms will make firms appear to be “model citizens” and when it will make them seem like imposters.

Their theory is two-fold: First, those who follow through and do social good in response to an explicit “social mandate” are viewed as “model citizens.” Second, those who go out of their way to do social good without any prompts or social mandates are less likely to be trusted and will be widely viewed as imposters.

Think about the following situation. A “social mandate” is given to a politician when they are asked in an interview what they think about a particular cause. In that context, if they express support, audiences are less likely to suspect the politician of having ulterior motives or pandering to constituents. After all, if the politician does not express support in that situation, that is tantamount to expressing disapproval. Here, the interview question (i.e., “social mandate”) provides a cover of plausible deniability to any suspicions of ulterior motives. Law enforcement (e.g., police, prosecutors) often have this social mandate built into their professions.

But if the politician takes initiative — unprompted — to support the same cause, they will more likely be viewed with suspicion. They may instead appear to seek out social rewards associated with supporting the cause (e.g., good reputation), without the cover of plausible deniability.

To test their theory, Kim and Zuckerman launched a series of experiments involving 509 online participants based in the United States. The experiments sought to determine how respondents perceive individuals who encourage others to abide by social norms. Participants were specifically asked to identify which of two individuals they think are “model citizens” committed to the norm, or “imposters” who are uncommitted but trying to hide their own deviance.

The researchers found that people who encourage others to abide by social norms when prompted (“social mandate”) are perceived as “model citizens,” while those who do the same but without such prompts are more likely to appear as “imposters.” This duality provides a clear guideline for managers engaging in corporate social responsibility: When suspicions are rampant, launching pro-social campaigns without a plausible mandate may heighten suspicion regarding motives.

The larger question is how to build firms and societies where people can safely support norms (that we all support) without being suspected as imposters. After all, we want our own norms and moral principles to govern our lives. But in some situations, we may mistakenly vilify those who are trying to do good, based on the absence of some contextual “social mandate.”

------

This article originally ran on Rice Business Wisdom and was based on research from Minjae Kim, assistant professor of organizational behavior at Rice University Jones Graduate School of Business, and Ezra Zuckerman Sivan, the Alvin J. Siteman (1948) Professor of Strategy and Entrepreneurship at MIT Sloan School of Management.

The Rice Business Plan Competition is back in person this year, and these are the 42 teams that will go head to head for investments and prizes. Photo courtesy of Rice University

Rice University's student startup competition names 42 teams to compete for over $1 million in prizes

ready to pitch

The Rice Alliance for Technology and Entrepreneurship and the Jones Graduate School of Business have announced the 42 student teams that will compete in the 2022 Rice Business Plan Competition, which returns to an in-person format on the Rice University campus in April.

Of the teams competing for more than $1 million in prizes and funding in this year's competition, six hail from Texas — two teams each from Rice University, University of Texas at Austin, and Texas A&M University. The student competitors represent 31 universities — including three from European universities. The 42 teams were narrowed down from over 400 applicants and divided into five categories: energy, cleantech and sustainability; life sciences and health care solutions; consumer products and services; hard tech; and digital enterprise.

This is the first in-person RBPC since 2019, and the university is ready to bring together the entrepreneurs and a community of over 250 judges, mentors, and investors to the competition.

“As we come out on the other side of a long and challenging two years, we're feeling a sense of renewal and energy as we look to the future and finding inspiration from the next generation of entrepreneurs who are building a better world,” says Catherine Santamaria, director of the RBPC, in a news release.

“This year's competition celebrates student founders with a strong sense of determination — founders who are ready to adapt, build and grow companies that can change the future,” she continues. “We hope their participation will provide guidance and inspiration for our community.”

According to a news release, this year's RBPC Qualifier Competition, which narrowed down Rice's student teams that will compete in the official competition, saw the largest number of applicants, judges, and participants in the competition’s history. The Rice Alliance awarded a total of $5,000 in cash prizes to the top three teams from the internal qualifier: EpiFresh, Green Room and Anvil Diagnostics. From those three, Rice teams EpiFresh and Green Room received invitations to compete in the 2022 RBPC..

The full list of student teams that will be competing April 7 to 9 this year include:

  • Acorn Genetics from Northwestern University
  • Advanced Optronics from Carnegie Mellon University
  • Aethero Space from University of Missouri
  • AImirr from University of Chicago
  • AiroSolve from UCLA
  • Algeon Materials from UC San Diego
  • Anise Health from Harvard University
  • Beyond Silicon from Arizona State University
  • Bold Move Beverages from University of Texas at Austin
  • Diamante from University of Verona
  • EarthEn from Arizona State University
  • Empower Sleep from University of Pennsylvania
  • EpiFresh from Rice University
  • EpiSLS from University of Michigan
  • Green Room from Rice University
  • Horizon Health Solutions from University of Arkansas
  • Hoth Intelligence from Thomas Jefferson University
  • INIA Biosciences from Boston University
  • Invictus BCI from MIT
  • Invitris from Technical University of Munich (TUM)
  • KLAW Industries from Binghamton University
  • LIDROTEC from RWTH Aachen
  • Locus Lock from University of Texas at Austin
  • LymphaSense from Johns Hopkins University
  • Mallard Bay Outdoors from Louisiana State University
  • Mantel from MIT
  • Olera from Texas A&M University
  • OpenCell AI from Weill Cornell Medicine
  • OraFay from UCLA
  • Pareto from Stanford University
  • Photonect Interconnect Solutions from University of Rochester
  • PLAKK from McGill University
  • PneuTech from Johns Hopkins University
  • Rola from UC San Diego
  • RotorX from Georgia Tech
  • SimulatED from Carnegie Mellon University
  • SuChef from University of Pennsylvania
  • Symetric Finance from Fairfield University
  • Teale from Texas A&M University
  • Team Real Talk from University at Buffalo
  • TransCrypts from Harvard University
  • Woobie from Brigham Young University
Last year's awards had 54 student teams competing virtually, with over $1.4 million in cash and prizes awarded. Throughout RBPC's history, competitors have gone onto raise more than $3.57 billion in capital and more than 259 RBPC alumni have successfully launched their ventures. Forty RBPC startups that have had successful exits through acquisitions or trading on a public market, per the news release.
The lab will launch virtually first, before moving into a physical space early next year. Photo via Getty Images

Houston software company to launch innovation lab for enterprise startups

new to hou

A Houston-based global software development company has teamed up to create an innovation lab that will launch virtually before moving into a physical space early next year.

Softeq Development Corporation announced the creation of the Softeq Innovation Lab in partnership with the Massachusetts Institute of Technology's Integrated Design and Management program and Massachusetts-based Boundless Technology. The lab is directed at helping enterprise companies collaborate on the technologies of tomorrow, according to a news release.

"At the Softeq Innovation Lab, we recognize the importance of developing an incubator that goes beyond innovation theatre and are rolling up our sleeves to achieve transformative disruption in enterprise companies," says Christopher A. Howard, Softeq founder and CEO, in the release.

"The first wave of disruption was based in Silicon Valley," he continues. "The second wave of disruption is occurring in industries central to Houston's economy such as energy, health care, and financial services. With technology rewriting the playbooks for these industries, Houston is the perfect venue for our Innovation Lab to enable companies to thrive in this new age of disruption."

First up for the lab is a series of Boundless Bootcamps, which aims to connect participants to corporate disruptors, including David Rose of Warby Parker and MIT Media Lab.

"The city of Houston is at the center of a powerful convergence between industry, innovation and proven intrapreneurs," says Chuck Goldman, principal at Boundless Technology, in the release. "The Softeq Innovation Lab brings together entrepreneurs, corporations and 20X innovators who have achieved ROI of at least 20X and built billion-dollar businesses."

In addition to having access to MIT, Boundless, and Softeq's global networks, the participants will also receive an MIT IDM Certification from the nation's top engineering, design, and business program.

"I'm thrilled to bring our leadership and human-centered design program to Houston to help intrapreneurs drive breakthrough growth in leading organizations" says Matt Kressy, founding director MIT IDM, in the release.

For additional information or to find out more about how to get involved please visit the Softeq Innovation Lab's website.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston engineers develop breakthrough device to advance spinal cord treatment

future of health

A team of Rice University engineers has developed an implantable probe over a hundred times smaller than the width of a hair that aims to help develop better treatments for spinal cord disease and injury.

Detailed in a recent study published in Cell Reports, the probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement, according to a statement from Rice. The research was supported by the National Institutes of Health, Rice, the California-based Salk Institute for Biological Studies, and the philanthropic Mary K. Chapman Foundation based in Oklahoma.

The soft and flexible sensor was used to record neuronal activity in freely moving mice with high resolution for multiple days. Historically, tracking this level of activity has been difficult for researchers because the spinal cord and its neurons move so much during normal activity, according to the team.

“We developed a tiny sensor, spinalNET, that records the electrical activity of spinal neurons as the subject performs normal activity without any restraint,” Yu Wu, a research scientist at Rice and lead author of the study said in a statement. “Being able to extract such knowledge is a first but important step to develop cures for millions of people suffering from spinal cord diseases.”

The team says that before now the spinal cord has been considered a "black box." But the device has already helped the team uncover new findings about the body's rhythmic motor patterns, which drive walking, breathing and chewing.

Lan Luan (from left), Yu Wu, and Chong Xie are working on the breakthrough device. Photo by Jeff Fitlow/Rice University

"Some (spinal neurons) are strongly correlated with leg movement, but surprisingly, a lot of neurons have no obvious correlation with movement,” Wu said in the statement. “This indicates that the spinal circuit controlling rhythmic movement is more complicated than we thought.”

The team said they hope to explore these findings further and aim to use the technology for additional medical purposes.

“In addition to scientific insight, we believe that as the technology evolves, it has great potential as a medical device for people with spinal cord neurological disorders and injury,” Lan Luan, an associate professor of electrical and computer engineering at Rice and a corresponding author on the study, added in the statement.

Rice researchers have developed several implantable, minimally invasive devices to address health and mental health issues.

In the spring, the university announced that the United States Department of Defense had awarded a four-year, $7.8 million grant to the Texas Heart Institute and a Rice team led by co-investigator Yaxin Wang to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation.

That same month, the university shared news that Professor Jacob Robinson had published findings on minimally invasive bioelectronics for treating psychiatric conditions. The 9-millimeter device can deliver precise and programmable stimulation to the brain to help treat depression, obsessive-compulsive disorder and post-traumatic stress disorder.

Houston clean hydrogen startup to pilot tech with O&G co.

stay gold

Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

“This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

“With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

------

This article originally ran on EnergyCapital.

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes an e-commerce startup founder, an industrial biologist, and a cellular scientist.

Omair Tariq, co-founder and CEO of Cart.com

Omair Tariq of Cart.com joins the Houston Innovators Podcast to share his confidence in Houston as the right place to scale his unicorn. Photo via Cart.com

Houston-based Cart.com, which operates a multichannel commerce platform, has secured $105 million in debt refinancing from investment manager BlackRock.

The debt refinancing follows a recent $25 million series C extension round, bringing Cart.com’s series C total to $85 million. The scaleup’s valuation now stands at $1.2 billion, making it one of the few $1 billion-plus “unicorns” in the Houston area.

Cart.com was co-founded by CEO Omair Tariq in October 2020. Read more.

Nádia Skorupa Parachin, vice president of industrial biotechnology at Cemvita

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos. Read more.

Han Xiao, associate professor of chemistry at Rice University

The funds were awarded to Han Xiao, a chemist at Rice University.

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories. Xiao will use the five-year grant to advance his work on noncanonical amino acids.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement. Read more.