Breakthrough research on metastatic breast cancer, a new way to turn toxic pollutants into valuable chemicals, and an evolved brain tumor chip are three cancer-fighting treatments coming out of Houston. Getty Inages

Cancer remains to be one of the medical research community's huge focuses and challenges, and scientists in Houston are continuing to innovate new treatments and technologies to make an impact on cancer and its ripple effect.

Three research projects coming out of Houston institutions are providing solutions in the fight against cancer — from ways to monitor treatment to eliminating cancer-causing chemicals in the first place.

Baylor College of Medicine's breakthrough in breast cancer

Photo via bcm.edu

Researchers at Baylor College of Medicine and Harvard Medical School have unveiled a mechanism explains how "endocrine-resistant breast cancer acquires metastatic behavior," according to a news release from BCM. This research can be game changing for introducing new therapeutic strategies.

The study was published in the Proceedings of the National Academy of Sciences and shows that hyperactive FOXA1 signaling — previously reported in endocrine-resistant metastatic breast cancer — can trigger genome-wide reprogramming that enhances resistance to treatment.

"Working with breast cancer cell lines in the laboratory, we discovered that FOXA1 reprograms endocrine therapy-resistant breast cancer cells by turning on certain genes that were turned off before and turning off other genes," says Dr. Xiaoyong Fu, assistant professor of molecular and cellular biology and part of the Lester and Sue Smith Breast Center at Baylor, in the release.

"The new gene expression program mimics an early embryonic developmental program that endow cancer cells with new capabilities, such as being able to migrate to other tissues and invade them aggressively, hallmarks of metastatic behavior."

Patients whose cancer is considered metastatic — even ones that initially responded to treatment — tend to relapse and die due to the cancer's resistance to treatment. This research will allow for new conversations around therapeutic treatment that could work to eliminate metastatic cancer.

University of Houston's evolved brain cancer chip

Photo via uh.edu

A biomedical research team at the University of Houston has made improvements on its microfluidic brain cancer chip. The Akay Lab's new chip "allows multiple-simultaneous drug administration, and a massive parallel testing of drug response for patients with glioblastoma," according to a UH news release. GBM is the most common malignant brain tumor and makes up half of all cases. Patients with GBM have a five-year survival rate of only 5.6 percent.

"The new chip generates tumor spheroids, or clusters, and provides large-scale assessments on the response of these GBM tumor cells to various concentrations and combinations of drugs. This platform could optimize the use of rare tumor samples derived from GBM patients to provide valuable insight on the tumor growth and responses to drug therapies," says Metin Akay, John S. Dunn Endowed Chair Professor of Biomedical Engineering and department chair, in the release.

Akay's team published a paper in the inaugural issue of the IEEE Engineering in Medicine & Biology Society's Open Journal of Engineering in Medicine and Biology. The report explains how the technology is able to quickly assess how well a cancer drug is improving its patients' health.

"When we can tell the doctor that the patient needs a combination of drugs and the exact proportion of each, this is precision medicine," Akay explains in the release.

Rice University's pollution transformation technology

Photo via rice.edu

Rice University engineers have developed a way to get rid of cancer-causing pollutants in water and transform them into valuable chemicals. A team lead by Michael Wong and Thomas Senftle has created this new catalyst that turns nitrate into ammonia. The study was published in the journal ACS Catalysis.

"Agricultural fertilizer runoff is contaminating ground and surface water, which causes ecological effects such as algae blooms as well as significant adverse effects for humans, including cancer, hypertension and developmental issues in babies," says Wong, professor and chair of the Department of Chemical and Biomolecular Engineering in Rice's Brown School of Engineering, in a news release. "I've been very curious about nitrogen chemistry, especially if I can design materials that clean water of nitrogen compounds like nitrites and nitrates."

The ability to transform these chemicals into ammonia is crucial because ammonia-based fertilizers are used for global food supplies and the traditional method of creating ammonia is energy intensive. Not only does this process eliminate that energy usage, but it's ridding the contaminated water of toxic chemicals.

"I'm excited about removing nitrite, forming ammonia and hydrazine, as well as the chemistry that we figured out about how all this happens," Wong says in the release. "The most important takeaway is that we learned how to clean water in a simpler way and created chemicals that are more valuable than the waste stream."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas ranks among 10 best states to find a job, says new report

jobs report

If you’re hunting for a job in Texas amid a tough employment market, you stand a better chance of landing it here than you might in other states.

A new ranking by personal finance website WalletHub of the best states for jobs puts Texas at No. 7. The Lone Star State lands at No. 2 in the economic environment category and No. 18 in the job market category.

Massachusetts tops the list, and West Virginia appears at the bottom.

To determine the most attractive states for employment, WalletHub compared the 50 states across 34 key indicators of economic health and job market strength. Ranking factors included employment growth, median annual income, and average commute time.

“Living in one of the best states for jobs can provide stable conditions for the long term, helping you ride out the fluctuations that the economy will experience in the future,” WalletHub analyst Chip Lupo says.

In September, Gov. Greg Abbott announced Texas led the U.S. in job creation with the addition of 195,600 jobs over the past 12 months.

“Texas is America’s jobs leader,” Abbott says. “With the best business climate in the nation and a skilled and growing labor force, Texas is where businesses invest, jobs grow, and families thrive. Texas will continue to cut red tape and invest in businesses large and small to spur the economic growth of communities across our great state.”

While Abbott proclaims Texas is “America’s jobs leader,” the state’s level of job creation has recently slowed. In June, the Federal Reserve Bank of Dallas noted that the state’s year-to-date job growth rate had dipped to 1.8 percent, and that even slower job growth was expected in the second half of this year.

The August unemployment rate in Texas stood at 4.1 percent, according to the Texas Workforce Commission. Throughout 2025, the monthly rate in Texas has been either four percent or 4.1 percent.

By comparison, the U.S. unemployment rate in August was 4.3 percent, according to the U.S. Bureau of Labor Statistics. In 2025, the monthly rate for the U.S. has ranged from 4 percent to 4.3 percent.

Here’s a rundown of the August unemployment rates in Texas’ four biggest metro areas:

  • Austin — 3.9 percent
  • Dallas-Fort Worth — 4.4 percent
  • Houston — 5 percent
  • San Antonio — 4.4 percent

Unemployment rates have remained steady this year despite layoffs and hiring freezes driven by economic uncertainty. However, the number of U.S. workers who’ve been without a job for at least 27 weeks has risen by 385,000 this year, the Bureau of Labor Statistics reported in August. That month, long-term unemployed workers accounted for about one-fourth of all unemployed workers.

An August survey by the Federal Reserve Bank of New York showed a record-low 44.9 percent of Americans were confident about finding a job if they lost their current one.

TMC, Memorial Hermann launch partnership to spur new patient care technologies

medtech partnership

Texas Medical Center and Memorial Hermann Health System have launched a new collaboration for developing patient care technology.

Through the partnership, Memorial Hermann employees and physicians will now be able to participate in the TMC Center for Device Innovation (CDI), which will assist them in translating product innovation ideas into working prototypes. The first group of entrepreneurs will pitch their innovations in early 2026, according to a release from TMC.

“Memorial Hermann is excited to launch this new partnership with the TMC CDI,” Ini Ekiko Thomas, vice president of information technology at Memorial Hermann, said in the news release. “As we continue to grow (a) culture of innovation, we look forward to supporting our employees, affiliated physicians and providers in new ways.”

Mentors from Memorial Hermann, TMC Innovation and industry experts with specialties in medicine, regulatory strategy, reimbursement planning and investor readiness will assist with the program. The innovators will also gain access to support systems like product innovation and translation strategy, get dedicated engineering and machinist resources and personal workbench space at the CDI.

“The prototyping facilities and opportunities at TMC are world-class and globally recognized, attracting innovators from around the world to advance their technologies,” Tom Luby, chief innovation officer at TMC Innovation Factor, said in the release.

Memorial Hermann says the partnership will support its innovation hub’s “pilot and scale approach” and hopes that it will extend the hub’s impact in “supporting researchers, clinicians and staff in developing patentable, commercially viable products.”

“We are excited to expand our partnership with Memorial Hermann and open the doors of our Center for Device Innovation to their employees and physicians—already among the best in medical care,” Luby added in the release. “We look forward to seeing what they accomplish next, utilizing our labs and gaining insights from top leaders across our campus.”